A Class of Cubic Graphs Satisfying Berge Conjecture

Berge Conjecture states that every bridgeless cubic graph has 5 perfect matchings such that each edge is contained in at least one of them. In this paper, we show that Berge Conjecture holds for bridgeless cubic graphs which have two perfect matchings with at most one common edge.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2022-06, Vol.38 (3), Article 66
Hauptverfasser: Sun, Wuyang, Wang, Fan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Berge Conjecture states that every bridgeless cubic graph has 5 perfect matchings such that each edge is contained in at least one of them. In this paper, we show that Berge Conjecture holds for bridgeless cubic graphs which have two perfect matchings with at most one common edge.
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-022-02466-2