Enhancing visible-light photocatalytic activity of hard-biotemplated TiO2: From macrostructural morphology replication to microstructural building units design
Biotemplating technique using hard templates is an effective strategy to prepare visible light-activated TiO2 inherited macrostructural morphologies and self-doping elements from templates. However, conventional hard biotemplating method for preparing TiO2 focused only on replicating the macrostruct...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2022-03, Vol.898, p.162886, Article 162886 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biotemplating technique using hard templates is an effective strategy to prepare visible light-activated TiO2 inherited macrostructural morphologies and self-doping elements from templates. However, conventional hard biotemplating method for preparing TiO2 focused only on replicating the macrostructural morphology of templates via the sol-gel method, and neglected the effect of microstructural building units for artificial macrostructure assembly. Generally, the microstructural building units of the final macrostructural morphology are tightly packed nanoparticles. This paper presents a newly designed solvothermal method to replace the microstructural building units from tightly packed nanoparticles to convex nanowires or concave pores. This strategy can achieve the leap of conventional hard biotemplating method from macrostructure replication to microstructural building units design. The hard-biotemplated TiO2 with designed microstructure exhibited significantly further enhanced visible-light photocatalytic efficiency in tetracycline degradation due to the increase of active sites, high separation efficiency of photo-generated electrons and reducing the charge-transfer resistance. Biotemplated TiO2 with concave porous microstructural building units is 22.0, 5.5 and 4.4 times higher than those of pure TiO2 and the two biotemplated TiO2 samples prepared via conventional sol-gel method and solvothermal method without glycerol or HF added, respectively. The enhanced visible-light photocatalytic efficiency by microstructure design was also demonstrated by using ciprofloxacin.
[Display omitted]
•A new strategy of syntheses to control microstructure of biotemplated TiO2.•Macrostructural morphology assembled by designed microstructural building units.•Concave porous microstructures markedly enhance the photocatalytic efficiency.•Twenty-fold higher photocatalytic degradation of tetracycline than pure TiO2.•Photocatalytic efficiency is 5.5 times higher than conventional biotemplated TiO2. |
---|---|
ISSN: | 0925-8388 1873-4669 |
DOI: | 10.1016/j.jallcom.2021.162886 |