Cr-doped SnO2 microrods adhering nanoparticles for enhanced triethylamine sensing performance
[Display omitted] Cr-doped SnO2 materials were synthesized by a facile hydrothermal method and their gas-sensing properties were studied. The characterization results show that as-prepared materials consist of SnO2 microrods and nanoparticles (NPs) that were adhered on the surface of microrods. The...
Gespeichert in:
Veröffentlicht in: | Materials letters 2022-04, Vol.312, p.131684, Article 131684 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Cr-doped SnO2 materials were synthesized by a facile hydrothermal method and their gas-sensing properties were studied. The characterization results show that as-prepared materials consist of SnO2 microrods and nanoparticles (NPs) that were adhered on the surface of microrods. The sensing test results indicate that the 5 mol% Cr-doped SnO2 exhibits the enhanced response and high selectivity to triethylamine (TEA), and the response to 100 ppm TEA increased four times. The response time is only 1 s. Notably, a good stability is maintained under surroundings with fluctuating humidity at lower operating temperature, implying that Cr-doped SnO2 can be served as a sensor platform for TEA detection.
•SnO2 microrods were self-assembled from nanoparticles (NP s) by hydrothermal route.•SnO2 NPs adhered on microrods are akin grapes and form hybrid structures.•The selectivity toward VOCs can be controlled effectively by adjusting Cr dopant.•The Cr/SnO2 exhibits high response and stability to TEA under various humidities.•The Cr/SnO2 is suitably served as sensor material for detection of volatile gases. |
---|---|
ISSN: | 0167-577X 1873-4979 |
DOI: | 10.1016/j.matlet.2022.131684 |