Performance analysis of full-duplex decode-and-forward two-way relay networks with transceiver impairments
In this paper, we analyze the performance of an in-band full-duplex (IBFD) decode-and-forward (DF) two-way relay (TWR) system whose two terminal nodes exchange information via a relay node over the same frequency and time slot. Unlike the previous works on full-duplex two-way relay systems, we inves...
Gespeichert in:
Veröffentlicht in: | Annales des télécommunications 2022-04, Vol.77 (3-4), p.187-200 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we analyze the performance of an in-band full-duplex (IBFD) decode-and-forward (DF) two-way relay (TWR) system whose two terminal nodes exchange information via a relay node over the same frequency and time slot. Unlike the previous works on full-duplex two-way relay systems, we investigate the system performance under the impacts of both hardware impairments and imperfect self-interference cancellation (SIC) at all full-duplex nodes. Specifically, we derive the exact expression of outage probability based on the signal to interference plus noise and distortion ratio (SINDR), thereby determine the throughput and the symbol error probability (SEP) of the considered system. The numerical results show a strong impact of transceiver impairments on the system performance, making it saturate at even a low level of residual self-interference. In order to tackle with the impact of hardware impairments, we derive an optimal power allocation factor for the relay node to minimize the outage performance. Finally, the numerical results are validated by Monte Carlo simulations. |
---|---|
ISSN: | 0003-4347 1958-9395 |
DOI: | 10.1007/s12243-021-00870-y |