Achieving Real-Time Path Planning in Unknown Environments Through Deep Neural Networks
Real-time path planning is crucial for intelligent vehicles to achieve autonomous navigation. In this paper, we propose a novel deep neural network (DNN) based method for real-time online path planning in unknown cluttered environments. Firstly, an end-to-end DNN architecture named online three-dime...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2022-03, Vol.23 (3), p.2093-2102 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Real-time path planning is crucial for intelligent vehicles to achieve autonomous navigation. In this paper, we propose a novel deep neural network (DNN) based method for real-time online path planning in unknown cluttered environments. Firstly, an end-to-end DNN architecture named online three-dimensional path planning network (OTDPP-Net) is designed to learn 3D local path planning policies. It determines actions in 3D space based on multiple value iteration computations approximated by recurrent 2D convolutional neural networks. Moreover, a path planning framework is also developed to realize near-optimal real-time online path planning. The effectiveness of the proposed planner is further improved by a switching scheme, and the path quality is optimized by line-of-sight checks. Both virtual and real-world experimental results demonstrate the remarkable performance of the proposed DNN-based path planner in terms of efficiency, success rate and path quality. Different from existing methods, the computational time and effectiveness of the developed DNN-based path planner are both independent of environmental conditions, which reveals its superiority in large-scale complex environments. A video of our experiments can be found at: https://youtu.be/gb4nSG4hd6s . |
---|---|
ISSN: | 1524-9050 1558-0016 |
DOI: | 10.1109/TITS.2020.3031962 |