Recovery of Cr from chrome-containing leather waste and its utilization as reinforcement along with waste spent alumina catalyst and grinding sludge in AA 5052-based metal matrix composites
The present investigation deals with the development of AA 5052-based metal matrix composites (MMCs) by utilizing industrial wastes, spent alumina catalyst, chrome-containing leather waste, and grinding sludge as a reinforcement material. The chrome-containing leather waste has been utilized to extr...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering Journal of process mechanical engineering, 2022-02, Vol.236 (1), p.160-170 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present investigation deals with the development of AA 5052-based metal matrix composites (MMCs) by utilizing industrial wastes, spent alumina catalyst, chrome-containing leather waste, and grinding sludge as a reinforcement material. The chrome-containing leather waste has been utilized to extract the collagen powder, which is a form of chromium oxide. The presence of Al2O3, Fe2O3, and SiO2 phases in the spent alumina catalyst and grinding sludge ball-milled powder encourages its utilization as reinforcement material (in the form of Cr) for the development of MMCs. The stir-casting technique has been used to develop the aluminum-based MMC with waste spent alumina catalyst, chrome-containing leather waste, and grinding sludge. Further, results revealed that the matrix material mechanical properties compressive strength, tensile strength, and hardness were significantly increased by 12.93%, 5.34%, and 31.81% after adding spent alumina catalyst, Cr, and grinding sludge with the weight percentage (wt.%) of 4.5%, 1.5%, and 4.5%, respectively, but the toughness was reduced. The microstructural investigation indicated the uniform distribution of reinforcing elements spent alumina catalyst (4.5 wt.%), GS (4.5%), and Cr (1.5%) in the aluminum matrix material. Further, the influence of given reinforcement elements on the thermal expansion and corrosion weight loss properties of aluminum alloy matrix material has also been investigated. |
---|---|
ISSN: | 0954-4089 2041-3009 |
DOI: | 10.1177/09544089211038385 |