Power Management and Control of a Hybrid Electric Vehicle Based on Photovoltaic, Fuel Cells, and Battery Energy Sources

This paper deals with an energy management problem to ensure the best performance of the recharging tools used in electric vehicles. The main objective of this work is to find the optimal condition for controlling a hybrid recharging system by regrouping the photovoltaic cells and fuel cells. The ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-03, Vol.14 (5), p.2551
Hauptverfasser: Mohamed, Naoui, Aymen, Flah, Altamimi, Abdullah, Khan, Zafar A., Lassaad, Sbita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with an energy management problem to ensure the best performance of the recharging tools used in electric vehicles. The main objective of this work is to find the optimal condition for controlling a hybrid recharging system by regrouping the photovoltaic cells and fuel cells. The photovoltaic and fuel cell systems were connected in parallel via two converters to feed either a lithium battery bank or the main traction motor. This combination of energy sources resulted in a hybrid recharging system. The mathematical model of the overall recharging system and the designed power management loop was developed, taking into account multiple aspects, including vehicle loading, the stepwise mathematical modelling of each component, and a detailed discussion of the required electronic equipment. Finally, a simplistic management loop was designed and implemented. Multiple case studies were simulated, statistical approaches were used to quantify the contribution of each recharging method, and the benefits of the combination of the two sources were evaluated. The energetic performance of an electric vehicle with the proposed hybrid recharging tool under various conditions, including static and dynamic modes, was simulated using the MATLAB/Simulink tool. The results suggest that despite the additional weight of PV panels, the combination of the PV and FC systems improves the vehicle’s energetic performance and provides a higher charging capacity instead of using an FC alone. A comparison with similar studies revealed that the proposed model has a higher efficiency. Finally, the benefits and drawbacks of each solution are discussed to emphasise the significance of the hybrid recharging system.
ISSN:2071-1050
2071-1050
DOI:10.3390/su14052551