Nitrate Water Contamination from Industrial Activities and Complete Denitrification as a Remediation Option
Freshwater is a scarce resource that continues to be at high risk of pollution from anthropogenic activities, requiring remediation in such cases for its continuous use. The agricultural and mining industries extensively use water and nitrogen (N)-dependent products, mainly in fertilizers and explos...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2022-03, Vol.14 (5), p.799 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Freshwater is a scarce resource that continues to be at high risk of pollution from anthropogenic activities, requiring remediation in such cases for its continuous use. The agricultural and mining industries extensively use water and nitrogen (N)-dependent products, mainly in fertilizers and explosives, respectively, with their excess accumulating in different water bodies. Although removal of NO3 from water and soil through the application of chemical, physical, and biological methods has been studied globally, these methods seldom yield N2 gas as a desired byproduct for nitrogen cycling. These methods predominantly cause secondary contamination with deposits of chemical waste such as slurry brine, nitrite (NO2), ammonia (NH3), and nitrous oxide (N2O), which are also harmful and fastidious to remove. This review focuses on complete denitrification facilitated by bacteria as a remedial option aimed at producing nitrogen gas as a terminal byproduct. Synergistic interaction of different nitrogen metabolisms from different bacteria is highlighted, with detailed attention to the optimization of their enzymatic activities. A biotechnological approach to mitigating industrial NO3 contamination using indigenous bacteria from wastewater is proposed, holding the prospect of optimizing to the point of complete denitrification. The approach was reviewed and found to be durable, sustainable, cost effective, and environmentally friendly, as opposed to current chemical and physical water remediation technologies. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w14050799 |