Geochemical Proxies and Mineralogical Fingerprints of Sedimentary Processes in a Closed Shallow Lake Basin Since 1850
Lake systems are essential for the environment, the biosphere, and humans but are highly impacted by anthropogenic activities accentuated by climate change. Understanding how lake ecosystems change due to human impacts and natural forces is crucial to managing their current state and possible future...
Gespeichert in:
Veröffentlicht in: | Aquatic geochemistry 2022-03, Vol.28 (1), p.43-62 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lake systems are essential for the environment, the biosphere, and humans but are highly impacted by anthropogenic activities accentuated by climate change. Understanding how lake ecosystems change due to human impacts and natural forces is crucial to managing their current state and possible future restoration. The high sensitivity of shallow closed lakes to natural and anthropogenic forcing makes these lacustrine ecosystems highly prone to variations in precipitation and sedimentation processes. These variation processes, occurring in the water column, produce geochemical markers or proxies recorded in lake sedimentary archives. This study investigated specific proxies on high-resolution sedimentary archives (2–3 years resolution) of the Trasimeno lake (Central Italy). The Trasimeno lake underwent three different hydrological phases during the twentieth century due to several fluctuations induced mainly by human activities and climate change. The Trasimeno lake, a large and shallow basin located in the Mediterranean area, is a good case study to assess the effects of intense anthropogenic activity related to agriculture, tourism, industry, and climate changes during the Anthropocene. The aim is to identify the main characteristics of the main sedimentary events in the lake during the last 150 years, determining the concentrations of major and trace elements, the amount of organic matter, and the mineralogical composition of the sediments. This type of work demonstrates that studying sediment archives at high resolution is a viable method for reconstructing the lake’s history through the evolution/trends of the geochemical proxies stored in the sediment records. This effort makes it possible to assess past anthropogenic impact and, under the objectives of the European Green Deal (zero-pollution ambition for a toxic-free environment), to monitor, prevent, and remedy pollution related to soil and water compartments.
Graphical abstract |
---|---|
ISSN: | 1380-6165 1573-1421 |
DOI: | 10.1007/s10498-022-09403-y |