Recognition of Isolated Digit Using Random Forest for Audio-Visual Speech Recognition

The proposed research work clearly investigates the effective use of two modalities (audio and visual inputs) toward designing functional audio-visual speech recognition system. The promising results presented in this piece of work were obtained on vVISWa (visual Vocabulary of Isolated Standard Word...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences, India, Section A, physical sciences India, Section A, physical sciences, 2022-03, Vol.92 (1), p.103-110
Hauptverfasser: Borde, Prashant, Kulkarni, Sadanand, Gawali, Bharti, Yannawar, Pravin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The proposed research work clearly investigates the effective use of two modalities (audio and visual inputs) toward designing functional audio-visual speech recognition system. The promising results presented in this piece of work were obtained on vVISWa (visual Vocabulary of Isolated Standard Words) dataset of audio-visual words and CUAVE (Clemson University Audio-Visual Experiments) database, respectively. The discrete cosine transform (DCT), local binary pattern (LBP) features of full frontal visual profile and MFCC features for acoustics signals were fused together for recognition purpose and were classified using random forest classifier.
ISSN:0369-8203
2250-1762
DOI:10.1007/s40010-020-00724-7