Möbius Action of SL(2;R) on Different Homogeneous Spaces
In this paper, we have considered all the possible continuous subgroups of the Lie group S L ( 2 ; R ) (upto conjugacy) from dimension zero to three. For each of the classification, we have defined group action on the same line as Kisil. Möbius transformation has been taken as the corresponding acti...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences, India, Section A, physical sciences India, Section A, physical sciences, 2022-03, Vol.92 (1), p.23-29 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we have considered all the possible continuous subgroups of the Lie group
S
L
(
2
;
R
)
(upto conjugacy) from dimension zero to three. For each of the classification, we have defined group action on the same line as Kisil. Möbius transformation has been taken as the corresponding action. This action is defined on the homogeneous spaces of various dimensions generated by the subgroups. |
---|---|
ISSN: | 0369-8203 2250-1762 |
DOI: | 10.1007/s40010-020-00673-1 |