Generalized Ricci solitons on contact metric manifolds

In the present paper we prove that, if a N ( k )-contact manifold of dimension ( 2 n + 1 ) satisfies the generalized Ricci soliton equation ( 1.4 ) and X = g r a d f , f being a smooth function, then f is a constant function. Furthermore, if c 2 ≠ 0 , then the manifold is either locally isometric to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Afrika mathematica 2022-06, Vol.33 (2), Article 32
Hauptverfasser: Ghosh, Gopal, De, Uday Chand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper we prove that, if a N ( k )-contact manifold of dimension ( 2 n + 1 ) satisfies the generalized Ricci soliton equation ( 1.4 ) and X = g r a d f , f being a smooth function, then f is a constant function. Furthermore, if c 2 ≠ 0 , then the manifold is either locally isometric to the product E n + 1 ( 0 ) × S n ( 4 ) for n > 1 and flat for n = 1 , or the manifold is an Einstein one.
ISSN:1012-9405
2190-7668
DOI:10.1007/s13370-021-00944-z