On the Positive Definiteness of the Poincaré–Steklov Operator for Elastic Half-Plane
The Poincaré–Steklov operator that maps normal stresses to normal displacements on a part of a half-plane boundary is studied. A boundary value problem is formulated to introduce the associated Poincaré–Steklov operator. An integral representation based on the solution to the Flamant problem for an ...
Gespeichert in:
Veröffentlicht in: | Moscow University mechanics bulletin 2021-11, Vol.76 (6), p.156-162 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 162 |
---|---|
container_issue | 6 |
container_start_page | 156 |
container_title | Moscow University mechanics bulletin |
container_volume | 76 |
creator | Bobylev, A. A. |
description | The Poincaré–Steklov operator that maps normal stresses to normal displacements on a part of a half-plane boundary is studied. A boundary value problem is formulated to introduce the associated Poincaré–Steklov operator. An integral representation based on the solution to the Flamant problem for an elastic half-plane subjected to a concentrated normal force is given for the operator under consideration. It is found that the properties of the Poincaré–Steklov operator depend on the choice of kinematic conditions specifying the rigid-body displacements of the half-plane. Positive definiteness conditions of the Poincaré–Steklov operator are obtained. It is shown that a suitable scaling of the computational domain can be used to provide the positive definiteness of this operator. |
doi_str_mv | 10.3103/S0027133021060029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2637577029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637577029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-af7aaf1df6e9b444fe8196ff11cde69a2a2db540fdde3392ca2b8d9b2a3e60d83</originalsourceid><addsrcrecordid>eNp1kE1KA0EQhRtRMEYP4K7B9Wj_zF8vJUYjBCYQxeVQM1OtHcfp2N0JuPMOnsJzeBNP4oQEXIiLogq-917BI-SUs3PJmbyYMyYyLiUTnKX9rfbIgCsZR3mciH0y2OBoww_JkfcLxpJExWJAHoqOhiekM-tNMGukV6hNZwJ26D21egdNV4P7-vx-_5gHfG7tmhZLdBCso7qfcQs-mJpOoNXRrIUOj8mBhtbjyW4Pyf31-G40iabFze3ochrVIs1DBDoD0LzRKaoqjmONOVep1pzXDaYKBIimSmKmmwalVKIGUeWNqgRITFmTyyE52-YunX1doQ_lwq5c178sRSqzJMv6LnoV36pqZ713qMulMy_g3krOyk1_5Z_-eo_Yenyv7R7R_Sb_b_oBaQBz5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637577029</pqid></control><display><type>article</type><title>On the Positive Definiteness of the Poincaré–Steklov Operator for Elastic Half-Plane</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bobylev, A. A.</creator><creatorcontrib>Bobylev, A. A.</creatorcontrib><description>The Poincaré–Steklov operator that maps normal stresses to normal displacements on a part of a half-plane boundary is studied. A boundary value problem is formulated to introduce the associated Poincaré–Steklov operator. An integral representation based on the solution to the Flamant problem for an elastic half-plane subjected to a concentrated normal force is given for the operator under consideration. It is found that the properties of the Poincaré–Steklov operator depend on the choice of kinematic conditions specifying the rigid-body displacements of the half-plane. Positive definiteness conditions of the Poincaré–Steklov operator are obtained. It is shown that a suitable scaling of the computational domain can be used to provide the positive definiteness of this operator.</description><identifier>ISSN: 0027-1330</identifier><identifier>EISSN: 1934-8452</identifier><identifier>DOI: 10.3103/S0027133021060029</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Boundary value problems ; Classical Mechanics ; Physics ; Physics and Astronomy</subject><ispartof>Moscow University mechanics bulletin, 2021-11, Vol.76 (6), p.156-162</ispartof><rights>Allerton Press, Inc. 2021</rights><rights>Allerton Press, Inc. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-af7aaf1df6e9b444fe8196ff11cde69a2a2db540fdde3392ca2b8d9b2a3e60d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0027133021060029$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0027133021060029$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bobylev, A. A.</creatorcontrib><title>On the Positive Definiteness of the Poincaré–Steklov Operator for Elastic Half-Plane</title><title>Moscow University mechanics bulletin</title><addtitle>Moscow Univ. Mech. Bull</addtitle><description>The Poincaré–Steklov operator that maps normal stresses to normal displacements on a part of a half-plane boundary is studied. A boundary value problem is formulated to introduce the associated Poincaré–Steklov operator. An integral representation based on the solution to the Flamant problem for an elastic half-plane subjected to a concentrated normal force is given for the operator under consideration. It is found that the properties of the Poincaré–Steklov operator depend on the choice of kinematic conditions specifying the rigid-body displacements of the half-plane. Positive definiteness conditions of the Poincaré–Steklov operator are obtained. It is shown that a suitable scaling of the computational domain can be used to provide the positive definiteness of this operator.</description><subject>Boundary value problems</subject><subject>Classical Mechanics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0027-1330</issn><issn>1934-8452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1KA0EQhRtRMEYP4K7B9Wj_zF8vJUYjBCYQxeVQM1OtHcfp2N0JuPMOnsJzeBNP4oQEXIiLogq-917BI-SUs3PJmbyYMyYyLiUTnKX9rfbIgCsZR3mciH0y2OBoww_JkfcLxpJExWJAHoqOhiekM-tNMGukV6hNZwJ26D21egdNV4P7-vx-_5gHfG7tmhZLdBCso7qfcQs-mJpOoNXRrIUOj8mBhtbjyW4Pyf31-G40iabFze3ochrVIs1DBDoD0LzRKaoqjmONOVep1pzXDaYKBIimSmKmmwalVKIGUeWNqgRITFmTyyE52-YunX1doQ_lwq5c178sRSqzJMv6LnoV36pqZ713qMulMy_g3krOyk1_5Z_-eo_Yenyv7R7R_Sb_b_oBaQBz5A</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Bobylev, A. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211101</creationdate><title>On the Positive Definiteness of the Poincaré–Steklov Operator for Elastic Half-Plane</title><author>Bobylev, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-af7aaf1df6e9b444fe8196ff11cde69a2a2db540fdde3392ca2b8d9b2a3e60d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary value problems</topic><topic>Classical Mechanics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bobylev, A. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Moscow University mechanics bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bobylev, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Positive Definiteness of the Poincaré–Steklov Operator for Elastic Half-Plane</atitle><jtitle>Moscow University mechanics bulletin</jtitle><stitle>Moscow Univ. Mech. Bull</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>76</volume><issue>6</issue><spage>156</spage><epage>162</epage><pages>156-162</pages><issn>0027-1330</issn><eissn>1934-8452</eissn><abstract>The Poincaré–Steklov operator that maps normal stresses to normal displacements on a part of a half-plane boundary is studied. A boundary value problem is formulated to introduce the associated Poincaré–Steklov operator. An integral representation based on the solution to the Flamant problem for an elastic half-plane subjected to a concentrated normal force is given for the operator under consideration. It is found that the properties of the Poincaré–Steklov operator depend on the choice of kinematic conditions specifying the rigid-body displacements of the half-plane. Positive definiteness conditions of the Poincaré–Steklov operator are obtained. It is shown that a suitable scaling of the computational domain can be used to provide the positive definiteness of this operator.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0027133021060029</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-1330 |
ispartof | Moscow University mechanics bulletin, 2021-11, Vol.76 (6), p.156-162 |
issn | 0027-1330 1934-8452 |
language | eng |
recordid | cdi_proquest_journals_2637577029 |
source | SpringerLink Journals - AutoHoldings |
subjects | Boundary value problems Classical Mechanics Physics Physics and Astronomy |
title | On the Positive Definiteness of the Poincaré–Steklov Operator for Elastic Half-Plane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A21%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Positive%20Definiteness%20of%20the%20Poincar%C3%A9%E2%80%93Steklov%20Operator%20for%20Elastic%20Half-Plane&rft.jtitle=Moscow%20University%20mechanics%20bulletin&rft.au=Bobylev,%20A.%20A.&rft.date=2021-11-01&rft.volume=76&rft.issue=6&rft.spage=156&rft.epage=162&rft.pages=156-162&rft.issn=0027-1330&rft.eissn=1934-8452&rft_id=info:doi/10.3103/S0027133021060029&rft_dat=%3Cproquest_cross%3E2637577029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637577029&rft_id=info:pmid/&rfr_iscdi=true |