On the Positive Definiteness of the Poincaré–Steklov Operator for Elastic Half-Plane

The Poincaré–Steklov operator that maps normal stresses to normal displacements on a part of a half-plane boundary is studied. A boundary value problem is formulated to introduce the associated Poincaré–Steklov operator. An integral representation based on the solution to the Flamant problem for an ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Moscow University mechanics bulletin 2021-11, Vol.76 (6), p.156-162
1. Verfasser: Bobylev, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Poincaré–Steklov operator that maps normal stresses to normal displacements on a part of a half-plane boundary is studied. A boundary value problem is formulated to introduce the associated Poincaré–Steklov operator. An integral representation based on the solution to the Flamant problem for an elastic half-plane subjected to a concentrated normal force is given for the operator under consideration. It is found that the properties of the Poincaré–Steklov operator depend on the choice of kinematic conditions specifying the rigid-body displacements of the half-plane. Positive definiteness conditions of the Poincaré–Steklov operator are obtained. It is shown that a suitable scaling of the computational domain can be used to provide the positive definiteness of this operator.
ISSN:0027-1330
1934-8452
DOI:10.3103/S0027133021060029