On the properties of the Aron-Berner regularity of bounded tri-linear maps

Let \(f:X\times Y\times Z\longrightarrow W \) be a bounded tri-linear map on normed spaces. We say that \(f\) is close-to-regular when \(f^{t***s}=f^{s***t}\) and \(f\) is Aron-Berener regular when all natural extensions are equal. In this manuscript, we have some results on the Aron-Berner regular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-02
Hauptverfasser: Akhlaghi, Neda, Azar, Kazem Haghnejad, Abotaleb Sheikhali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(f:X\times Y\times Z\longrightarrow W \) be a bounded tri-linear map on normed spaces. We say that \(f\) is close-to-regular when \(f^{t***s}=f^{s***t}\) and \(f\) is Aron-Berener regular when all natural extensions are equal. In this manuscript, we have some results on the Aron-Berner regular maps. We investigate the relation between Arens regularity of bounded bilinear maps and Aron-Berner regularity of bounded tri-linear maps. We also give a simple criterion for the Aron-Berner regularity of tri-linear maps.
ISSN:2331-8422