Liouville property and existence of entire solutions of Hessian equations

In this paper, we establish the existence and uniqueness theorem for entire solutions of Hessian equations with prescribed asymptotic behavior at infinity. This extends the previous results on Monge-Amp\`{e}re equations. Our approach also makes the prescribed asymptotic order optimal within the rang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-03
Hauptverfasser: Wang, Cong, Bao, Jiguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we establish the existence and uniqueness theorem for entire solutions of Hessian equations with prescribed asymptotic behavior at infinity. This extends the previous results on Monge-Amp\`{e}re equations. Our approach also makes the prescribed asymptotic order optimal within the range preset in exterior Dirichlet problems. In addition, we show a Liouville type result for \(k\)-convex solutions. This partly removes the \((k+1)\)- or \(n\)-convexity restriction imposed in existing work.
ISSN:2331-8422