Liouville property and existence of entire solutions of Hessian equations
In this paper, we establish the existence and uniqueness theorem for entire solutions of Hessian equations with prescribed asymptotic behavior at infinity. This extends the previous results on Monge-Amp\`{e}re equations. Our approach also makes the prescribed asymptotic order optimal within the rang...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we establish the existence and uniqueness theorem for entire solutions of Hessian equations with prescribed asymptotic behavior at infinity. This extends the previous results on Monge-Amp\`{e}re equations. Our approach also makes the prescribed asymptotic order optimal within the range preset in exterior Dirichlet problems. In addition, we show a Liouville type result for \(k\)-convex solutions. This partly removes the \((k+1)\)- or \(n\)-convexity restriction imposed in existing work. |
---|---|
ISSN: | 2331-8422 |