Constructional Safety-Based Cost Optimization for the Buckling–Anchorage System of Cantilever Casting Concrete Arch Bridges
Abstract The buckling–anchorage system (BAS) is critical in the construction of cantilever casting concrete arch bridges. However, due to the limitations of the anchor positions, the BAS always needs a trade-off between material cost and construction safety. This paper proposes a cost optimization m...
Gespeichert in:
Veröffentlicht in: | Journal of bridge engineering 2022-05, Vol.27 (5) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
The buckling–anchorage system (BAS) is critical in the construction of cantilever casting concrete arch bridges. However, due to the limitations of the anchor positions, the BAS always needs a trade-off between material cost and construction safety. This paper proposes a cost optimization method for BAS while considering the safety requirements of the structure during the erection process. The proposed framework couples particle swarm optimization with the numerical simulation of the erection process. The optimization model considers the height of the pylon and the anchorage interval of the buckle cables as design variables with constructional safety constraints. The internal force balanced method is utilized to determine the anchorage–buckling cable forces to reduce the structural analysis cost of the optimization. The numerical investigation based on a real arch bridge demonstrates the feasibility of the proposed approach and shows valuable suggestions to the design of BAS for similar applications. |
---|---|
ISSN: | 1084-0702 1943-5592 |
DOI: | 10.1061/(ASCE)BE.1943-5592.0001859 |