Theoretical derivation of Darcy's law for fluid flow in thin porous media
In this paper we study stationary incompressible Newtonian fluid flow in a thin porous media. The media under consideration is a bounded perforated 3D domain confined between two parallel plates. The description of the domain includes two small parameters: ε representing the distance between plates...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2022-03, Vol.295 (3), p.607-623 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study stationary incompressible Newtonian fluid flow in a thin porous media. The media under consideration is a bounded perforated 3D domain confined between two parallel plates. The description of the domain includes two small parameters: ε representing the distance between plates and aε$a_\varepsilon$ connected to the microstructure of the domain such that aε≪ε$a_\varepsilon \ll \varepsilon$. We consider the classical setting of perforated media, i.e. aε$a_\varepsilon$‐periodically distributed solid (not connected) obstacles of size aε$a_\varepsilon$. The goal of this paper is to introduce a version of the unfolding method, depending on both parameters ε and aε$a_\varepsilon$, and then to derive the corresponding 2D Darcy law. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.202000184 |