Variational quantum reinforcement learning via evolutionary optimization

Recent advances in classical reinforcement learning (RL) and quantum computation point to a promising direction for performing RL on a quantum computer. However, potential applications in quantum RL are limited by the number of qubits available in modern quantum devices. Here, we present two framewo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning: science and technology 2022-03, Vol.3 (1), p.15025
Hauptverfasser: Chen, Samuel Yen-Chi, Huang, Chih-Min, Hsing, Chia-Wei, Goan, Hsi-Sheng, Kao, Ying-Jer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent advances in classical reinforcement learning (RL) and quantum computation point to a promising direction for performing RL on a quantum computer. However, potential applications in quantum RL are limited by the number of qubits available in modern quantum devices. Here, we present two frameworks for deep quantum RL tasks using gradient-free evolutionary optimization. First, we apply the amplitude encoding scheme to the Cart-Pole problem, where we demonstrate the quantum advantage of parameter saving using amplitude encoding. Second, we propose a hybrid framework where the quantum RL agents are equipped with a hybrid tensor network-variational quantum circuit (TN-VQC) architecture to handle inputs of dimensions exceeding the number of qubits. This allows us to perform quantum RL in the MiniGrid environment with 147-dimensional inputs. The hybrid TN-VQC architecture provides a natural way to perform efficient compression of the input dimension, enabling further quantum RL applications on noisy intermediate-scale quantum devices.
ISSN:2632-2153
2632-2153
DOI:10.1088/2632-2153/ac4559