Computational simulations and assessment of two approaches for x-ray phase contrast imaging
X-ray phase-contrast imaging is a high-resolution imaging that permits an increase of the perceptibility of the details in three-dimensional objects, such as human tissues compared to conventional absorption imaging. There are different approaches for implementing phase-contrast imaging and their in...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2022-01, Vol.2162 (1), p.12013 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | X-ray phase-contrast imaging is a high-resolution imaging that permits an increase of the perceptibility of the details in three-dimensional objects, such as human tissues compared to conventional absorption imaging. There are different approaches for implementing phase-contrast imaging and their introduction into clinical practice requires advanced computational tools. A long-term goal of our research is the development of computational models of breast phase-contrast imaging. The aim of this study is to develop a software module for implementing grating-based phase-contrast imaging. For this purpose, an existing in-house software application for x-ray imaging with a function to model and simulate propagation-based phase-contrast x-ray images has been extended to include a model of grating-based imaging. To test the new functionality, four computational phantoms reflecting features, which can be screened in the real breast tissue and which differ in their complexity, were designed. Planar x-ray images in absorption, propagation-based and grating-based modes were generated and compared. Results showed improved visual appearance of the simulated objects in images obtained by simulating grating-based imaging setup. The developed subroutine is planned to be experimentally validated at synchrotron facility. The new software functionality will be exploited in studies related to new x-ray imaging techniques for breast screening and diagnosing. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/2162/1/012013 |