Model-based dynamic performance simulation of a microturbine

Microturbines can be used not only in models and education but also to propel UAVs. However, their wider adoption is limited by their relatively low efficiency and durability. Validated simulation models are required to monitor their performance, improve their lifetime, and design engine control sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2022-02, Vol.1226 (1), p.12032
Hauptverfasser: Erario, Mario Leonardo, De Giorgi, Maria Grazia, Przysowa, Radoslaw
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microturbines can be used not only in models and education but also to propel UAVs. However, their wider adoption is limited by their relatively low efficiency and durability. Validated simulation models are required to monitor their performance, improve their lifetime, and design engine control systems. The aim of this study is to develop a numerical model of a micro gas turbine for engine performance predictions and prognostics. To build a reliable zero-dimensional model, the available compressor and turbine maps were scaled to available test bench data with the least-squares method, to meet the performance of the engine achieved during bench and flight tests. A steady-state aeroengine model was then developed and compared with experimental operating points. Selected flight data were then used as input for the transient engine model. The EGT temperature and the fuel flow were chosen as the two key parameters to validate the model, comparing the numerical predicted values with the correspondent experimental ones. The observed difference between the model and flight data was lower than 3% for both EGT and fuel flow.
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/1226/1/012032