Investigation of a Cherenkov-based gamma-ray diagnostic for measurement of 17 MeV gamma-rays from T(D, γ)5He in magnetic confinement fusion plasmas
At present, the only method for assessing the fusion power throughput of a reactor relies on the absolute measurement of 14 MeV neutrons produced in the D-T nuclear reaction. For ITER and DEMO, however, at least another independent measurement of the fusion power is required. The 5He* nucleus produc...
Gespeichert in:
Veröffentlicht in: | Journal of instrumentation 2022-02, Vol.17 (2), p.C02021 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | C02021 |
container_title | Journal of instrumentation |
container_volume | 17 |
creator | Putignano, O. Croci, G. Muraro, A. Cancelli, S. Giacomelli, L. Gorini, G. Grosso, G. Kushoro, M.H. Marcer, G. Nocente, M. Rebai, M. Tardocchi, M. |
description | At present, the only method for assessing the fusion power throughput of a reactor relies on the absolute measurement of 14 MeV neutrons produced in the D-T nuclear reaction. For ITER and DEMO, however, at least another independent measurement of the fusion power is required. The 5He* nucleus produced in the D-T fusion reaction has two de-excitation channels. The most likely is its disintegration in an alpha particle and a neutron, D + T → 5He* → α + n, by means of the nuclear force. There is however also an electromagnetic channel, with a branching ratio ∼10−5, which leads to the emission of a 17 MeV gamma-ray, i.e. D + T → 5He* → 5He + γ. The detection of this gamma-ray emission could serve as an independent method to determine the fusion power. In order to enable 17 MeV gamma-ray measurements, there is need for a detector with some coarse energy discrimination and, most importantly, capable of working in a neutron-rich environment. Conventional inorganic scintillators, such as LaBr3(Ce), have comparable efficiencies to neutrons and gamma-rays and they cannot be used for 17 MeV gamma-ray measurements without significant neutron shielding. In order to overcome this limitation, we here propose the conceptual design of a gamma-ray counter with a variable energy threshold based on the Cherenkov effect and designed to operate in intense neutron fields. The detector geometry has been optimized using Geant4 so to achieve a gamma-ray to neutron efficiency ratio better than 105. The design is based on a gas Cherenkov detector and the photo-sensor is still to investigated. |
doi_str_mv | 10.1088/1748-0221/17/02/C02021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2635543181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635543181</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1061-1741b5bd1e188d1960be1195051df5a9849e3c84986fcc44b399a59657ea063b3</originalsourceid><addsrcrecordid>eNptkE1OwzAQhS0kJMrPFZAlNoAI9SRxai9R-GmlIjaFbeQkdnFp7BA3ldix5QJchHtwCE6CoyDKgs3MSH7fG89D6BDIORDGhjCKWUDCEPw0JOEwJSEJYQsNfh920K5zC0IopzEZoPeJWUu30nOx0tZgq7DA6aNspHmy6yAXTpZ4LqpKBI14waUWc2O9vMDKNriSwrWNrKRZdSSMvl7fbuXDBnBYNbbCs-PLM_z5cULHEmuDK28iO4_CGqVNz6vWdR-ol8JVwu2jbSWWTh789D10f301S8fB9O5mkl5MAw0kgcBfBTnNS5DAWAk8IbkE4JRQKBUVnMVcRoWvLFFFEcd5xLmgPKEjKUgS5dEeOup968Y-tz6IbGHbxviVWZhElMYRMPCqsFdpW28EQLIu86yLNuui9ZPvWZ-5h07_gRba-CV_hVldqugbiGiGQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635543181</pqid></control><display><type>article</type><title>Investigation of a Cherenkov-based gamma-ray diagnostic for measurement of 17 MeV gamma-rays from T(D, γ)5He in magnetic confinement fusion plasmas</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Putignano, O. ; Croci, G. ; Muraro, A. ; Cancelli, S. ; Giacomelli, L. ; Gorini, G. ; Grosso, G. ; Kushoro, M.H. ; Marcer, G. ; Nocente, M. ; Rebai, M. ; Tardocchi, M.</creator><creatorcontrib>Putignano, O. ; Croci, G. ; Muraro, A. ; Cancelli, S. ; Giacomelli, L. ; Gorini, G. ; Grosso, G. ; Kushoro, M.H. ; Marcer, G. ; Nocente, M. ; Rebai, M. ; Tardocchi, M.</creatorcontrib><description>At present, the only method for assessing the fusion power throughput of a reactor relies on the absolute measurement of 14 MeV neutrons produced in the D-T nuclear reaction. For ITER and DEMO, however, at least another independent measurement of the fusion power is required. The 5He* nucleus produced in the D-T fusion reaction has two de-excitation channels. The most likely is its disintegration in an alpha particle and a neutron, D + T → 5He* → α + n, by means of the nuclear force. There is however also an electromagnetic channel, with a branching ratio ∼10−5, which leads to the emission of a 17 MeV gamma-ray, i.e. D + T → 5He* → 5He + γ. The detection of this gamma-ray emission could serve as an independent method to determine the fusion power. In order to enable 17 MeV gamma-ray measurements, there is need for a detector with some coarse energy discrimination and, most importantly, capable of working in a neutron-rich environment. Conventional inorganic scintillators, such as LaBr3(Ce), have comparable efficiencies to neutrons and gamma-rays and they cannot be used for 17 MeV gamma-ray measurements without significant neutron shielding. In order to overcome this limitation, we here propose the conceptual design of a gamma-ray counter with a variable energy threshold based on the Cherenkov effect and designed to operate in intense neutron fields. The detector geometry has been optimized using Geant4 so to achieve a gamma-ray to neutron efficiency ratio better than 105. The design is based on a gas Cherenkov detector and the photo-sensor is still to investigated.</description><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/17/02/C02021</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Alpha particles ; Alpha rays ; Cerenkov counters ; Cherenkov and transition radiation ; Disintegration ; Gamma detectors (scintillators, CZT, HPGe, HgI etc.) ; Gamma emission ; Gamma rays ; Gaseous detectors ; Magnetic shielding ; Neutrons ; Nuclear instruments and methods for hot plasma diagnostics ; Nuclear power plants ; Nuclear reactions ; Plasmas (physics) ; Scintillation counters ; Sensors</subject><ispartof>Journal of instrumentation, 2022-02, Vol.17 (2), p.C02021</ispartof><rights>2022 EURATOM</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-0221/17/02/C02021/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,782,786,27931,27932,53853,53900</link.rule.ids></links><search><creatorcontrib>Putignano, O.</creatorcontrib><creatorcontrib>Croci, G.</creatorcontrib><creatorcontrib>Muraro, A.</creatorcontrib><creatorcontrib>Cancelli, S.</creatorcontrib><creatorcontrib>Giacomelli, L.</creatorcontrib><creatorcontrib>Gorini, G.</creatorcontrib><creatorcontrib>Grosso, G.</creatorcontrib><creatorcontrib>Kushoro, M.H.</creatorcontrib><creatorcontrib>Marcer, G.</creatorcontrib><creatorcontrib>Nocente, M.</creatorcontrib><creatorcontrib>Rebai, M.</creatorcontrib><creatorcontrib>Tardocchi, M.</creatorcontrib><title>Investigation of a Cherenkov-based gamma-ray diagnostic for measurement of 17 MeV gamma-rays from T(D, γ)5He in magnetic confinement fusion plasmas</title><title>Journal of instrumentation</title><addtitle>J. Instrum</addtitle><description>At present, the only method for assessing the fusion power throughput of a reactor relies on the absolute measurement of 14 MeV neutrons produced in the D-T nuclear reaction. For ITER and DEMO, however, at least another independent measurement of the fusion power is required. The 5He* nucleus produced in the D-T fusion reaction has two de-excitation channels. The most likely is its disintegration in an alpha particle and a neutron, D + T → 5He* → α + n, by means of the nuclear force. There is however also an electromagnetic channel, with a branching ratio ∼10−5, which leads to the emission of a 17 MeV gamma-ray, i.e. D + T → 5He* → 5He + γ. The detection of this gamma-ray emission could serve as an independent method to determine the fusion power. In order to enable 17 MeV gamma-ray measurements, there is need for a detector with some coarse energy discrimination and, most importantly, capable of working in a neutron-rich environment. Conventional inorganic scintillators, such as LaBr3(Ce), have comparable efficiencies to neutrons and gamma-rays and they cannot be used for 17 MeV gamma-ray measurements without significant neutron shielding. In order to overcome this limitation, we here propose the conceptual design of a gamma-ray counter with a variable energy threshold based on the Cherenkov effect and designed to operate in intense neutron fields. The detector geometry has been optimized using Geant4 so to achieve a gamma-ray to neutron efficiency ratio better than 105. The design is based on a gas Cherenkov detector and the photo-sensor is still to investigated.</description><subject>Alpha particles</subject><subject>Alpha rays</subject><subject>Cerenkov counters</subject><subject>Cherenkov and transition radiation</subject><subject>Disintegration</subject><subject>Gamma detectors (scintillators, CZT, HPGe, HgI etc.)</subject><subject>Gamma emission</subject><subject>Gamma rays</subject><subject>Gaseous detectors</subject><subject>Magnetic shielding</subject><subject>Neutrons</subject><subject>Nuclear instruments and methods for hot plasma diagnostics</subject><subject>Nuclear power plants</subject><subject>Nuclear reactions</subject><subject>Plasmas (physics)</subject><subject>Scintillation counters</subject><subject>Sensors</subject><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkE1OwzAQhS0kJMrPFZAlNoAI9SRxai9R-GmlIjaFbeQkdnFp7BA3ldix5QJchHtwCE6CoyDKgs3MSH7fG89D6BDIORDGhjCKWUDCEPw0JOEwJSEJYQsNfh920K5zC0IopzEZoPeJWUu30nOx0tZgq7DA6aNspHmy6yAXTpZ4LqpKBI14waUWc2O9vMDKNriSwrWNrKRZdSSMvl7fbuXDBnBYNbbCs-PLM_z5cULHEmuDK28iO4_CGqVNz6vWdR-ol8JVwu2jbSWWTh789D10f301S8fB9O5mkl5MAw0kgcBfBTnNS5DAWAk8IbkE4JRQKBUVnMVcRoWvLFFFEcd5xLmgPKEjKUgS5dEeOup968Y-tz6IbGHbxviVWZhElMYRMPCqsFdpW28EQLIu86yLNuui9ZPvWZ-5h07_gRba-CV_hVldqugbiGiGQA</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Putignano, O.</creator><creator>Croci, G.</creator><creator>Muraro, A.</creator><creator>Cancelli, S.</creator><creator>Giacomelli, L.</creator><creator>Gorini, G.</creator><creator>Grosso, G.</creator><creator>Kushoro, M.H.</creator><creator>Marcer, G.</creator><creator>Nocente, M.</creator><creator>Rebai, M.</creator><creator>Tardocchi, M.</creator><general>IOP Publishing</general><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20220201</creationdate><title>Investigation of a Cherenkov-based gamma-ray diagnostic for measurement of 17 MeV gamma-rays from T(D, γ)5He in magnetic confinement fusion plasmas</title><author>Putignano, O. ; Croci, G. ; Muraro, A. ; Cancelli, S. ; Giacomelli, L. ; Gorini, G. ; Grosso, G. ; Kushoro, M.H. ; Marcer, G. ; Nocente, M. ; Rebai, M. ; Tardocchi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1061-1741b5bd1e188d1960be1195051df5a9849e3c84986fcc44b399a59657ea063b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alpha particles</topic><topic>Alpha rays</topic><topic>Cerenkov counters</topic><topic>Cherenkov and transition radiation</topic><topic>Disintegration</topic><topic>Gamma detectors (scintillators, CZT, HPGe, HgI etc.)</topic><topic>Gamma emission</topic><topic>Gamma rays</topic><topic>Gaseous detectors</topic><topic>Magnetic shielding</topic><topic>Neutrons</topic><topic>Nuclear instruments and methods for hot plasma diagnostics</topic><topic>Nuclear power plants</topic><topic>Nuclear reactions</topic><topic>Plasmas (physics)</topic><topic>Scintillation counters</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Putignano, O.</creatorcontrib><creatorcontrib>Croci, G.</creatorcontrib><creatorcontrib>Muraro, A.</creatorcontrib><creatorcontrib>Cancelli, S.</creatorcontrib><creatorcontrib>Giacomelli, L.</creatorcontrib><creatorcontrib>Gorini, G.</creatorcontrib><creatorcontrib>Grosso, G.</creatorcontrib><creatorcontrib>Kushoro, M.H.</creatorcontrib><creatorcontrib>Marcer, G.</creatorcontrib><creatorcontrib>Nocente, M.</creatorcontrib><creatorcontrib>Rebai, M.</creatorcontrib><creatorcontrib>Tardocchi, M.</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Putignano, O.</au><au>Croci, G.</au><au>Muraro, A.</au><au>Cancelli, S.</au><au>Giacomelli, L.</au><au>Gorini, G.</au><au>Grosso, G.</au><au>Kushoro, M.H.</au><au>Marcer, G.</au><au>Nocente, M.</au><au>Rebai, M.</au><au>Tardocchi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of a Cherenkov-based gamma-ray diagnostic for measurement of 17 MeV gamma-rays from T(D, γ)5He in magnetic confinement fusion plasmas</atitle><jtitle>Journal of instrumentation</jtitle><addtitle>J. Instrum</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>17</volume><issue>2</issue><spage>C02021</spage><pages>C02021-</pages><eissn>1748-0221</eissn><abstract>At present, the only method for assessing the fusion power throughput of a reactor relies on the absolute measurement of 14 MeV neutrons produced in the D-T nuclear reaction. For ITER and DEMO, however, at least another independent measurement of the fusion power is required. The 5He* nucleus produced in the D-T fusion reaction has two de-excitation channels. The most likely is its disintegration in an alpha particle and a neutron, D + T → 5He* → α + n, by means of the nuclear force. There is however also an electromagnetic channel, with a branching ratio ∼10−5, which leads to the emission of a 17 MeV gamma-ray, i.e. D + T → 5He* → 5He + γ. The detection of this gamma-ray emission could serve as an independent method to determine the fusion power. In order to enable 17 MeV gamma-ray measurements, there is need for a detector with some coarse energy discrimination and, most importantly, capable of working in a neutron-rich environment. Conventional inorganic scintillators, such as LaBr3(Ce), have comparable efficiencies to neutrons and gamma-rays and they cannot be used for 17 MeV gamma-ray measurements without significant neutron shielding. In order to overcome this limitation, we here propose the conceptual design of a gamma-ray counter with a variable energy threshold based on the Cherenkov effect and designed to operate in intense neutron fields. The detector geometry has been optimized using Geant4 so to achieve a gamma-ray to neutron efficiency ratio better than 105. The design is based on a gas Cherenkov detector and the photo-sensor is still to investigated.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/17/02/C02021</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1748-0221 |
ispartof | Journal of instrumentation, 2022-02, Vol.17 (2), p.C02021 |
issn | 1748-0221 |
language | eng |
recordid | cdi_proquest_journals_2635543181 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Alpha particles Alpha rays Cerenkov counters Cherenkov and transition radiation Disintegration Gamma detectors (scintillators, CZT, HPGe, HgI etc.) Gamma emission Gamma rays Gaseous detectors Magnetic shielding Neutrons Nuclear instruments and methods for hot plasma diagnostics Nuclear power plants Nuclear reactions Plasmas (physics) Scintillation counters Sensors |
title | Investigation of a Cherenkov-based gamma-ray diagnostic for measurement of 17 MeV gamma-rays from T(D, γ)5He in magnetic confinement fusion plasmas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T02%3A51%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20a%20Cherenkov-based%20gamma-ray%20diagnostic%20for%20measurement%20of%2017%E2%80%89MeV%20gamma-rays%20from%20T(D,%20%CE%B3)5He%20in%20magnetic%20confinement%20fusion%20plasmas&rft.jtitle=Journal%20of%20instrumentation&rft.au=Putignano,%20O.&rft.date=2022-02-01&rft.volume=17&rft.issue=2&rft.spage=C02021&rft.pages=C02021-&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/17/02/C02021&rft_dat=%3Cproquest_iop_j%3E2635543181%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635543181&rft_id=info:pmid/&rfr_iscdi=true |