Investigation of a Cherenkov-based gamma-ray diagnostic for measurement of 17 MeV gamma-rays from T(D, γ)5He in magnetic confinement fusion plasmas

At present, the only method for assessing the fusion power throughput of a reactor relies on the absolute measurement of 14 MeV neutrons produced in the D-T nuclear reaction. For ITER and DEMO, however, at least another independent measurement of the fusion power is required. The 5He* nucleus produc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of instrumentation 2022-02, Vol.17 (2), p.C02021
Hauptverfasser: Putignano, O., Croci, G., Muraro, A., Cancelli, S., Giacomelli, L., Gorini, G., Grosso, G., Kushoro, M.H., Marcer, G., Nocente, M., Rebai, M., Tardocchi, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page C02021
container_title Journal of instrumentation
container_volume 17
creator Putignano, O.
Croci, G.
Muraro, A.
Cancelli, S.
Giacomelli, L.
Gorini, G.
Grosso, G.
Kushoro, M.H.
Marcer, G.
Nocente, M.
Rebai, M.
Tardocchi, M.
description At present, the only method for assessing the fusion power throughput of a reactor relies on the absolute measurement of 14 MeV neutrons produced in the D-T nuclear reaction. For ITER and DEMO, however, at least another independent measurement of the fusion power is required. The 5He* nucleus produced in the D-T fusion reaction has two de-excitation channels. The most likely is its disintegration in an alpha particle and a neutron, D + T → 5He* → α + n, by means of the nuclear force. There is however also an electromagnetic channel, with a branching ratio ∼10−5, which leads to the emission of a 17 MeV gamma-ray, i.e. D + T → 5He* → 5He + γ. The detection of this gamma-ray emission could serve as an independent method to determine the fusion power. In order to enable 17 MeV gamma-ray measurements, there is need for a detector with some coarse energy discrimination and, most importantly, capable of working in a neutron-rich environment. Conventional inorganic scintillators, such as LaBr3(Ce), have comparable efficiencies to neutrons and gamma-rays and they cannot be used for 17 MeV gamma-ray measurements without significant neutron shielding. In order to overcome this limitation, we here propose the conceptual design of a gamma-ray counter with a variable energy threshold based on the Cherenkov effect and designed to operate in intense neutron fields. The detector geometry has been optimized using Geant4 so to achieve a gamma-ray to neutron efficiency ratio better than 105. The design is based on a gas Cherenkov detector and the photo-sensor is still to investigated.
doi_str_mv 10.1088/1748-0221/17/02/C02021
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2635543181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635543181</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1061-1741b5bd1e188d1960be1195051df5a9849e3c84986fcc44b399a59657ea063b3</originalsourceid><addsrcrecordid>eNptkE1OwzAQhS0kJMrPFZAlNoAI9SRxai9R-GmlIjaFbeQkdnFp7BA3ldix5QJchHtwCE6CoyDKgs3MSH7fG89D6BDIORDGhjCKWUDCEPw0JOEwJSEJYQsNfh920K5zC0IopzEZoPeJWUu30nOx0tZgq7DA6aNspHmy6yAXTpZ4LqpKBI14waUWc2O9vMDKNriSwrWNrKRZdSSMvl7fbuXDBnBYNbbCs-PLM_z5cULHEmuDK28iO4_CGqVNz6vWdR-ol8JVwu2jbSWWTh789D10f301S8fB9O5mkl5MAw0kgcBfBTnNS5DAWAk8IbkE4JRQKBUVnMVcRoWvLFFFEcd5xLmgPKEjKUgS5dEeOup968Y-tz6IbGHbxviVWZhElMYRMPCqsFdpW28EQLIu86yLNuui9ZPvWZ-5h07_gRba-CV_hVldqugbiGiGQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635543181</pqid></control><display><type>article</type><title>Investigation of a Cherenkov-based gamma-ray diagnostic for measurement of 17 MeV gamma-rays from T(D, γ)5He in magnetic confinement fusion plasmas</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Putignano, O. ; Croci, G. ; Muraro, A. ; Cancelli, S. ; Giacomelli, L. ; Gorini, G. ; Grosso, G. ; Kushoro, M.H. ; Marcer, G. ; Nocente, M. ; Rebai, M. ; Tardocchi, M.</creator><creatorcontrib>Putignano, O. ; Croci, G. ; Muraro, A. ; Cancelli, S. ; Giacomelli, L. ; Gorini, G. ; Grosso, G. ; Kushoro, M.H. ; Marcer, G. ; Nocente, M. ; Rebai, M. ; Tardocchi, M.</creatorcontrib><description>At present, the only method for assessing the fusion power throughput of a reactor relies on the absolute measurement of 14 MeV neutrons produced in the D-T nuclear reaction. For ITER and DEMO, however, at least another independent measurement of the fusion power is required. The 5He* nucleus produced in the D-T fusion reaction has two de-excitation channels. The most likely is its disintegration in an alpha particle and a neutron, D + T → 5He* → α + n, by means of the nuclear force. There is however also an electromagnetic channel, with a branching ratio ∼10−5, which leads to the emission of a 17 MeV gamma-ray, i.e. D + T → 5He* → 5He + γ. The detection of this gamma-ray emission could serve as an independent method to determine the fusion power. In order to enable 17 MeV gamma-ray measurements, there is need for a detector with some coarse energy discrimination and, most importantly, capable of working in a neutron-rich environment. Conventional inorganic scintillators, such as LaBr3(Ce), have comparable efficiencies to neutrons and gamma-rays and they cannot be used for 17 MeV gamma-ray measurements without significant neutron shielding. In order to overcome this limitation, we here propose the conceptual design of a gamma-ray counter with a variable energy threshold based on the Cherenkov effect and designed to operate in intense neutron fields. The detector geometry has been optimized using Geant4 so to achieve a gamma-ray to neutron efficiency ratio better than 105. The design is based on a gas Cherenkov detector and the photo-sensor is still to investigated.</description><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/17/02/C02021</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Alpha particles ; Alpha rays ; Cerenkov counters ; Cherenkov and transition radiation ; Disintegration ; Gamma detectors (scintillators, CZT, HPGe, HgI etc.) ; Gamma emission ; Gamma rays ; Gaseous detectors ; Magnetic shielding ; Neutrons ; Nuclear instruments and methods for hot plasma diagnostics ; Nuclear power plants ; Nuclear reactions ; Plasmas (physics) ; Scintillation counters ; Sensors</subject><ispartof>Journal of instrumentation, 2022-02, Vol.17 (2), p.C02021</ispartof><rights>2022 EURATOM</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-0221/17/02/C02021/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,782,786,27931,27932,53853,53900</link.rule.ids></links><search><creatorcontrib>Putignano, O.</creatorcontrib><creatorcontrib>Croci, G.</creatorcontrib><creatorcontrib>Muraro, A.</creatorcontrib><creatorcontrib>Cancelli, S.</creatorcontrib><creatorcontrib>Giacomelli, L.</creatorcontrib><creatorcontrib>Gorini, G.</creatorcontrib><creatorcontrib>Grosso, G.</creatorcontrib><creatorcontrib>Kushoro, M.H.</creatorcontrib><creatorcontrib>Marcer, G.</creatorcontrib><creatorcontrib>Nocente, M.</creatorcontrib><creatorcontrib>Rebai, M.</creatorcontrib><creatorcontrib>Tardocchi, M.</creatorcontrib><title>Investigation of a Cherenkov-based gamma-ray diagnostic for measurement of 17 MeV gamma-rays from T(D, γ)5He in magnetic confinement fusion plasmas</title><title>Journal of instrumentation</title><addtitle>J. Instrum</addtitle><description>At present, the only method for assessing the fusion power throughput of a reactor relies on the absolute measurement of 14 MeV neutrons produced in the D-T nuclear reaction. For ITER and DEMO, however, at least another independent measurement of the fusion power is required. The 5He* nucleus produced in the D-T fusion reaction has two de-excitation channels. The most likely is its disintegration in an alpha particle and a neutron, D + T → 5He* → α + n, by means of the nuclear force. There is however also an electromagnetic channel, with a branching ratio ∼10−5, which leads to the emission of a 17 MeV gamma-ray, i.e. D + T → 5He* → 5He + γ. The detection of this gamma-ray emission could serve as an independent method to determine the fusion power. In order to enable 17 MeV gamma-ray measurements, there is need for a detector with some coarse energy discrimination and, most importantly, capable of working in a neutron-rich environment. Conventional inorganic scintillators, such as LaBr3(Ce), have comparable efficiencies to neutrons and gamma-rays and they cannot be used for 17 MeV gamma-ray measurements without significant neutron shielding. In order to overcome this limitation, we here propose the conceptual design of a gamma-ray counter with a variable energy threshold based on the Cherenkov effect and designed to operate in intense neutron fields. The detector geometry has been optimized using Geant4 so to achieve a gamma-ray to neutron efficiency ratio better than 105. The design is based on a gas Cherenkov detector and the photo-sensor is still to investigated.</description><subject>Alpha particles</subject><subject>Alpha rays</subject><subject>Cerenkov counters</subject><subject>Cherenkov and transition radiation</subject><subject>Disintegration</subject><subject>Gamma detectors (scintillators, CZT, HPGe, HgI etc.)</subject><subject>Gamma emission</subject><subject>Gamma rays</subject><subject>Gaseous detectors</subject><subject>Magnetic shielding</subject><subject>Neutrons</subject><subject>Nuclear instruments and methods for hot plasma diagnostics</subject><subject>Nuclear power plants</subject><subject>Nuclear reactions</subject><subject>Plasmas (physics)</subject><subject>Scintillation counters</subject><subject>Sensors</subject><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkE1OwzAQhS0kJMrPFZAlNoAI9SRxai9R-GmlIjaFbeQkdnFp7BA3ldix5QJchHtwCE6CoyDKgs3MSH7fG89D6BDIORDGhjCKWUDCEPw0JOEwJSEJYQsNfh920K5zC0IopzEZoPeJWUu30nOx0tZgq7DA6aNspHmy6yAXTpZ4LqpKBI14waUWc2O9vMDKNriSwrWNrKRZdSSMvl7fbuXDBnBYNbbCs-PLM_z5cULHEmuDK28iO4_CGqVNz6vWdR-ol8JVwu2jbSWWTh789D10f301S8fB9O5mkl5MAw0kgcBfBTnNS5DAWAk8IbkE4JRQKBUVnMVcRoWvLFFFEcd5xLmgPKEjKUgS5dEeOup968Y-tz6IbGHbxviVWZhElMYRMPCqsFdpW28EQLIu86yLNuui9ZPvWZ-5h07_gRba-CV_hVldqugbiGiGQA</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Putignano, O.</creator><creator>Croci, G.</creator><creator>Muraro, A.</creator><creator>Cancelli, S.</creator><creator>Giacomelli, L.</creator><creator>Gorini, G.</creator><creator>Grosso, G.</creator><creator>Kushoro, M.H.</creator><creator>Marcer, G.</creator><creator>Nocente, M.</creator><creator>Rebai, M.</creator><creator>Tardocchi, M.</creator><general>IOP Publishing</general><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20220201</creationdate><title>Investigation of a Cherenkov-based gamma-ray diagnostic for measurement of 17 MeV gamma-rays from T(D, γ)5He in magnetic confinement fusion plasmas</title><author>Putignano, O. ; Croci, G. ; Muraro, A. ; Cancelli, S. ; Giacomelli, L. ; Gorini, G. ; Grosso, G. ; Kushoro, M.H. ; Marcer, G. ; Nocente, M. ; Rebai, M. ; Tardocchi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1061-1741b5bd1e188d1960be1195051df5a9849e3c84986fcc44b399a59657ea063b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alpha particles</topic><topic>Alpha rays</topic><topic>Cerenkov counters</topic><topic>Cherenkov and transition radiation</topic><topic>Disintegration</topic><topic>Gamma detectors (scintillators, CZT, HPGe, HgI etc.)</topic><topic>Gamma emission</topic><topic>Gamma rays</topic><topic>Gaseous detectors</topic><topic>Magnetic shielding</topic><topic>Neutrons</topic><topic>Nuclear instruments and methods for hot plasma diagnostics</topic><topic>Nuclear power plants</topic><topic>Nuclear reactions</topic><topic>Plasmas (physics)</topic><topic>Scintillation counters</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Putignano, O.</creatorcontrib><creatorcontrib>Croci, G.</creatorcontrib><creatorcontrib>Muraro, A.</creatorcontrib><creatorcontrib>Cancelli, S.</creatorcontrib><creatorcontrib>Giacomelli, L.</creatorcontrib><creatorcontrib>Gorini, G.</creatorcontrib><creatorcontrib>Grosso, G.</creatorcontrib><creatorcontrib>Kushoro, M.H.</creatorcontrib><creatorcontrib>Marcer, G.</creatorcontrib><creatorcontrib>Nocente, M.</creatorcontrib><creatorcontrib>Rebai, M.</creatorcontrib><creatorcontrib>Tardocchi, M.</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Putignano, O.</au><au>Croci, G.</au><au>Muraro, A.</au><au>Cancelli, S.</au><au>Giacomelli, L.</au><au>Gorini, G.</au><au>Grosso, G.</au><au>Kushoro, M.H.</au><au>Marcer, G.</au><au>Nocente, M.</au><au>Rebai, M.</au><au>Tardocchi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of a Cherenkov-based gamma-ray diagnostic for measurement of 17 MeV gamma-rays from T(D, γ)5He in magnetic confinement fusion plasmas</atitle><jtitle>Journal of instrumentation</jtitle><addtitle>J. Instrum</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>17</volume><issue>2</issue><spage>C02021</spage><pages>C02021-</pages><eissn>1748-0221</eissn><abstract>At present, the only method for assessing the fusion power throughput of a reactor relies on the absolute measurement of 14 MeV neutrons produced in the D-T nuclear reaction. For ITER and DEMO, however, at least another independent measurement of the fusion power is required. The 5He* nucleus produced in the D-T fusion reaction has two de-excitation channels. The most likely is its disintegration in an alpha particle and a neutron, D + T → 5He* → α + n, by means of the nuclear force. There is however also an electromagnetic channel, with a branching ratio ∼10−5, which leads to the emission of a 17 MeV gamma-ray, i.e. D + T → 5He* → 5He + γ. The detection of this gamma-ray emission could serve as an independent method to determine the fusion power. In order to enable 17 MeV gamma-ray measurements, there is need for a detector with some coarse energy discrimination and, most importantly, capable of working in a neutron-rich environment. Conventional inorganic scintillators, such as LaBr3(Ce), have comparable efficiencies to neutrons and gamma-rays and they cannot be used for 17 MeV gamma-ray measurements without significant neutron shielding. In order to overcome this limitation, we here propose the conceptual design of a gamma-ray counter with a variable energy threshold based on the Cherenkov effect and designed to operate in intense neutron fields. The detector geometry has been optimized using Geant4 so to achieve a gamma-ray to neutron efficiency ratio better than 105. The design is based on a gas Cherenkov detector and the photo-sensor is still to investigated.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/17/02/C02021</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1748-0221
ispartof Journal of instrumentation, 2022-02, Vol.17 (2), p.C02021
issn 1748-0221
language eng
recordid cdi_proquest_journals_2635543181
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Alpha particles
Alpha rays
Cerenkov counters
Cherenkov and transition radiation
Disintegration
Gamma detectors (scintillators, CZT, HPGe, HgI etc.)
Gamma emission
Gamma rays
Gaseous detectors
Magnetic shielding
Neutrons
Nuclear instruments and methods for hot plasma diagnostics
Nuclear power plants
Nuclear reactions
Plasmas (physics)
Scintillation counters
Sensors
title Investigation of a Cherenkov-based gamma-ray diagnostic for measurement of 17 MeV gamma-rays from T(D, γ)5He in magnetic confinement fusion plasmas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T02%3A51%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20a%20Cherenkov-based%20gamma-ray%20diagnostic%20for%20measurement%20of%2017%E2%80%89MeV%20gamma-rays%20from%20T(D,%20%CE%B3)5He%20in%20magnetic%20confinement%20fusion%20plasmas&rft.jtitle=Journal%20of%20instrumentation&rft.au=Putignano,%20O.&rft.date=2022-02-01&rft.volume=17&rft.issue=2&rft.spage=C02021&rft.pages=C02021-&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/17/02/C02021&rft_dat=%3Cproquest_iop_j%3E2635543181%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635543181&rft_id=info:pmid/&rfr_iscdi=true