Investigation of a Cherenkov-based gamma-ray diagnostic for measurement of 17 MeV gamma-rays from T(D, γ)5He in magnetic confinement fusion plasmas

At present, the only method for assessing the fusion power throughput of a reactor relies on the absolute measurement of 14 MeV neutrons produced in the D-T nuclear reaction. For ITER and DEMO, however, at least another independent measurement of the fusion power is required. The 5He* nucleus produc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of instrumentation 2022-02, Vol.17 (2), p.C02021
Hauptverfasser: Putignano, O., Croci, G., Muraro, A., Cancelli, S., Giacomelli, L., Gorini, G., Grosso, G., Kushoro, M.H., Marcer, G., Nocente, M., Rebai, M., Tardocchi, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:At present, the only method for assessing the fusion power throughput of a reactor relies on the absolute measurement of 14 MeV neutrons produced in the D-T nuclear reaction. For ITER and DEMO, however, at least another independent measurement of the fusion power is required. The 5He* nucleus produced in the D-T fusion reaction has two de-excitation channels. The most likely is its disintegration in an alpha particle and a neutron, D + T → 5He* → α + n, by means of the nuclear force. There is however also an electromagnetic channel, with a branching ratio ∼10−5, which leads to the emission of a 17 MeV gamma-ray, i.e. D + T → 5He* → 5He + γ. The detection of this gamma-ray emission could serve as an independent method to determine the fusion power. In order to enable 17 MeV gamma-ray measurements, there is need for a detector with some coarse energy discrimination and, most importantly, capable of working in a neutron-rich environment. Conventional inorganic scintillators, such as LaBr3(Ce), have comparable efficiencies to neutrons and gamma-rays and they cannot be used for 17 MeV gamma-ray measurements without significant neutron shielding. In order to overcome this limitation, we here propose the conceptual design of a gamma-ray counter with a variable energy threshold based on the Cherenkov effect and designed to operate in intense neutron fields. The detector geometry has been optimized using Geant4 so to achieve a gamma-ray to neutron efficiency ratio better than 105. The design is based on a gas Cherenkov detector and the photo-sensor is still to investigated.
ISSN:1748-0221
DOI:10.1088/1748-0221/17/02/C02021