Use of n-type amorphous silicon films as an electron transport layer in the perovskite solar cells

We have investigated the use of n-type amorphous silicon (n-a-Si) films as the electron transport layers (ETL) in perovskite (PVK) solar cells, aiming at the application to PVK/Si tandem solar cells. The use of n-a-Si as the ETL in MAPbI 3 PVK solar cells was attempted, and the power conversion effi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2022-02, Vol.61 (SB), p.SB1012
Hauptverfasser: Song, Zhancheng, Sumai, Yuuka, Tu, Huynh Thi Cam, Shahiduzzaman, Md, Taima, Tetsuya, Ohdaira, Keisuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have investigated the use of n-type amorphous silicon (n-a-Si) films as the electron transport layers (ETL) in perovskite (PVK) solar cells, aiming at the application to PVK/Si tandem solar cells. The use of n-a-Si as the ETL in MAPbI 3 PVK solar cells was attempted, and the power conversion efficiency (PCE) of fluorine-doped tin oxide- (FTO-) based solar cells was improved due to an improvement in coverage on FTO with thicker n-a-Si, but the external quantum efficiency in the short wavelength region was decreased due to parasitic absorption of n-a-Si. The use of indium tin oxide with a flat surface resulted in a PCE of 1.25% for the solar cells with 10 nm-thick n-a-Si. This work indicates that n-a-Si is a potential ETL candidate for PVK solar cells and provides strategic guidance for the future vacuum-integrated process of PVK/Si heterojunction tandem solar cells, which can be feasible for efficient mass production.
ISSN:0021-4922
1347-4065
DOI:10.35848/1347-4065/ac2c99