Investigation into the coherence of flame intensity oscillations in a model multi-element rocket combustor using complex networks
Capturing the complex spatiotemporal flame dynamics inside a rocket combustor is essential to validate high-fidelity simulations for developing high-performance rocket engines. Utilizing tools from a complex network theory, we construct positively and negatively correlated weighted networks from met...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2022-03, Vol.34 (3) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Capturing the complex spatiotemporal flame dynamics inside a rocket combustor is essential to validate high-fidelity simulations for developing high-performance rocket engines. Utilizing tools from a complex network theory, we construct positively and negatively correlated weighted networks from methylidyne (CH*) chemiluminescence intensity oscillations for different dynamical states observed during the transition to thermoacoustic instability (TAI) in a subscale multi-element rocket combustor. We find that the distribution of network measures quantitatively captures the extent of coherence in the flame dynamics. We discover that regions with highly correlated flame intensity oscillations tend to connect with other regions exhibiting highly correlated flame intensity oscillations. This phenomenon, known as assortative mixing, leads to a core group (a cluster) in the flow-field that acts as a “reservoir” for coherent flame intensity oscillations. Spatiotemporal features described in this study can be used to understand the self-excited flame response during the transition to TAI and validate high-fidelity simulations essential for developing high-performance rocket engines. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0080874 |