Coherence for bicategories, lax functors, and shadows

Coherence theorems are fundamental to how we think about monoidal categories and their generalizations. In this paper we revisit Mac Lane's original proof of coherence for monoidal categories using the Grothendieck construction. This perspective makes the approach of Mac Lane's proof very...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory and applications of categories 2022-01, Vol.38 (12), p.328
Hauptverfasser: Malkiewich, Cary, Ponto, Kate
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coherence theorems are fundamental to how we think about monoidal categories and their generalizations. In this paper we revisit Mac Lane's original proof of coherence for monoidal categories using the Grothendieck construction. This perspective makes the approach of Mac Lane's proof very amenable to generalization. We use the technique to give efficient proofs of many standard coherence theorems and new coherence results for bicategories with shadow and for their functors.
ISSN:1201-561X