Patterned fabric image retrieval using relevant feedback via geometric similarity

Due to the potential value in many areas, such as e-commerce and inventory management, fabric image retrieval, which is a special case of content-based image retrieval, has recently become a research hotspot. As a major category of textile fabrics, patterned fabrics have a diverse and complex appear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Textile research journal 2022-02, Vol.92 (3-4), p.409-422
Hauptverfasser: Xiang, Jun, Zhang, Ning, Pan, Ruru, Gao, Weidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the potential value in many areas, such as e-commerce and inventory management, fabric image retrieval, which is a special case of content-based image retrieval, has recently become a research hotspot. As a major category of textile fabrics, patterned fabrics have a diverse and complex appearance, making the retrieval task more challenging. To address this situation, this paper proposes a novel approach for patterned fabric based on the non-subsampled contourlet transform (NSCT) feature descriptor and relevance feedback technique. To integrate the color information into the NSCT feature descriptor, we extract the feature of patterned fabric images in HSV color space. An outlier rejection-based parametric relevance feedback algorithm is employed to adjust the similarity matrix to improve the retrieval results. The experimental results not only show the effectiveness of the proposed approach but also demonstrate that it can significantly improve the performance of the retrieval system compared to other state-of-the-art algorithms.
ISSN:0040-5175
1746-7748
DOI:10.1177/00405175211036205