ISSRseq: An extensible method for reduced representation sequencing
The capability to generate densely sampled single nucleotide polymorphism (SNP) data is essential in diverse subdisciplines of biology, including crop breeding, pathology, forensics, forestry, ecology, evolution and conservation. However, the wet‐laboratory expertise and bioinformatics training requ...
Gespeichert in:
Veröffentlicht in: | Methods in ecology and evolution 2022-03, Vol.13 (3), p.668-681 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The capability to generate densely sampled single nucleotide polymorphism (SNP) data is essential in diverse subdisciplines of biology, including crop breeding, pathology, forensics, forestry, ecology, evolution and conservation. However, the wet‐laboratory expertise and bioinformatics training required to conduct genome‐scale variant discovery remain limiting factors for investigators with limited resources.
Here we present ISSRseq, a PCR‐based method for reduced representation of genomic variation using simple sequence repeats as priming sites to sequence inter simple sequence repeat (ISSR) regions. Briefly, ISSR regions are amplified with single primers, pooled, used to construct sequencing libraries with a commercially available kit, and sequenced on the Illumina platform. We also present a flexible bioinformatic pipeline that assembles ISSR loci, calls and hard filters variants, outputs data matrices in common formats, and conducts population analyses using R.
Using three angiosperm species as case studies, we demonstrate that ISSRseq is highly repeatable, necessitates only simple wet‐laboratory skills and commonplace instrumentation, is flexible in terms of the number of single primers used, and can generate genomic‐scale variant discovery on par with existing RRS methods which require more complex wet‐laboratory procedures.
ISSRseq represents a straightforward approach to SNP genotyping in any organism, and we predict that this method will be particularly useful for those studying population genomics and phylogeography of non‐model organisms. Furthermore, the ease of ISSRseq relative to other RRS methods should prove useful to those lacking advanced expertise in wet‐laboratory methods or bioinformatics. |
---|---|
ISSN: | 2041-210X 2041-210X |
DOI: | 10.1111/2041-210X.13784 |