Top k Optimal Sequenced Route Query with POI Preferences
The optimal sequenced route (OSR) query, as a popular problem in route planning for smart cities, searches for a minimum-distance route passing through several POIs in a specific order from a starting position. In reality, POIs are usually rated, which helps users in making decisions. Existing OSR q...
Gespeichert in:
Veröffentlicht in: | Data science and engineering 2022-03, Vol.7 (1), p.3-15 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 1 |
container_start_page | 3 |
container_title | Data science and engineering |
container_volume | 7 |
creator | Zhu, Huaijie Li, Wenbin Liu, Wei Yin, Jian Xu, Jianliang |
description | The optimal sequenced route (OSR) query, as a popular problem in route planning for smart cities, searches for a minimum-distance route passing through several POIs in a specific order from a starting position. In reality, POIs are usually rated, which helps users in making decisions. Existing OSR queries neglect the fact that the POIs in the same category could have different scores, which may affect users’ route choices. In this paper, we study a novel variant of OSR query, namely
Rating Constrained Optimal Sequenced Route query (RCOSR)
, in which the rating score of each POI in the optimal sequenced route should exceed the query threshold. To efficiently process RCOSR queries, we first extend the existing TD-OSR algorithm to propose a baseline method, called
MTDOSR
. To tackle the shortcomings of MTDOSR, we try to design a new RCOSR algorithm, namely
Optimal Subroute Expansion (OSE) Algorithm
. To enhance the OSE algorithm, we propose a
Reference Node Inverted Index (RNII)
to accelerate the distance computation of POI pairs in OSE and quickly retrieve the POIs of each category. To make full use of the OSE and RNII, we further propose a new efficient RCOSR algorithm, called
Recurrent Optimal Subroute Expansion (ROSE)
, which recurrently utilizes OSE to compute the current optimal route as the guiding path and update the distance of POI pairs to guide the expansion. Then, we extend our techniques to handle a variation of RCOSR query, namely RC
k
OSR query. The experimental results demonstrate that the proposed algorithm significantly outperforms the existing approaches. |
doi_str_mv | 10.1007/s41019-022-00177-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2635108402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635108402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-f60c8e43ad434fdf4fc14e9b195e5ba197ca9a1a6a42c146ed7419fd48a51ccb3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIVKU_wMkSZ4PXXjvJEVU8KlVqgXK2HMeBltIEOxHq3-MSEDdOu6udmZ0dQs6BXwLn2VVE4FAwLgTjHLKMqSMyElIjA4Vw_NtDrk7JJMYN51ykCVGPSL5qWvpGF223frdb-uQ_er9zvqKPTd95-tD7sKef6-6VLhczugy-9uEAiGfkpLbb6Cc_dUyeb29W03s2X9zNptdz5lDqjtWau9yjtBVKrKsaawfoixIK5VVpocicLSxYbVGkjfZVhlDUFeZWgXOlHJOLQbcNTfIWO7Np-rBLJ43QUgHPkYuEEgPKhSbG5NK0IT0U9ga4OYRkhpBMCsl8h2RUIsmBFBN49-LDn_Q_rC9KmmiE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635108402</pqid></control><display><type>article</type><title>Top k Optimal Sequenced Route Query with POI Preferences</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhu, Huaijie ; Li, Wenbin ; Liu, Wei ; Yin, Jian ; Xu, Jianliang</creator><creatorcontrib>Zhu, Huaijie ; Li, Wenbin ; Liu, Wei ; Yin, Jian ; Xu, Jianliang</creatorcontrib><description>The optimal sequenced route (OSR) query, as a popular problem in route planning for smart cities, searches for a minimum-distance route passing through several POIs in a specific order from a starting position. In reality, POIs are usually rated, which helps users in making decisions. Existing OSR queries neglect the fact that the POIs in the same category could have different scores, which may affect users’ route choices. In this paper, we study a novel variant of OSR query, namely
Rating Constrained Optimal Sequenced Route query (RCOSR)
, in which the rating score of each POI in the optimal sequenced route should exceed the query threshold. To efficiently process RCOSR queries, we first extend the existing TD-OSR algorithm to propose a baseline method, called
MTDOSR
. To tackle the shortcomings of MTDOSR, we try to design a new RCOSR algorithm, namely
Optimal Subroute Expansion (OSE) Algorithm
. To enhance the OSE algorithm, we propose a
Reference Node Inverted Index (RNII)
to accelerate the distance computation of POI pairs in OSE and quickly retrieve the POIs of each category. To make full use of the OSE and RNII, we further propose a new efficient RCOSR algorithm, called
Recurrent Optimal Subroute Expansion (ROSE)
, which recurrently utilizes OSE to compute the current optimal route as the guiding path and update the distance of POI pairs to guide the expansion. Then, we extend our techniques to handle a variation of RCOSR query, namely RC
k
OSR query. The experimental results demonstrate that the proposed algorithm significantly outperforms the existing approaches.</description><identifier>ISSN: 2364-1185</identifier><identifier>EISSN: 2364-1541</identifier><identifier>DOI: 10.1007/s41019-022-00177-5</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Artificial Intelligence ; Chemistry and Earth Sciences ; Computer Science ; Data Mining and Knowledge Discovery ; Database Management ; Invited Papers ; Physics ; Queries ; Query processing ; Route planning ; Statistics for Engineering ; Systems and Data Security</subject><ispartof>Data science and engineering, 2022-03, Vol.7 (1), p.3-15</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-f60c8e43ad434fdf4fc14e9b195e5ba197ca9a1a6a42c146ed7419fd48a51ccb3</citedby><cites>FETCH-LOGICAL-c436t-f60c8e43ad434fdf4fc14e9b195e5ba197ca9a1a6a42c146ed7419fd48a51ccb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s41019-022-00177-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s41019-022-00177-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,42189,51576</link.rule.ids></links><search><creatorcontrib>Zhu, Huaijie</creatorcontrib><creatorcontrib>Li, Wenbin</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Yin, Jian</creatorcontrib><creatorcontrib>Xu, Jianliang</creatorcontrib><title>Top k Optimal Sequenced Route Query with POI Preferences</title><title>Data science and engineering</title><addtitle>Data Sci. Eng</addtitle><description>The optimal sequenced route (OSR) query, as a popular problem in route planning for smart cities, searches for a minimum-distance route passing through several POIs in a specific order from a starting position. In reality, POIs are usually rated, which helps users in making decisions. Existing OSR queries neglect the fact that the POIs in the same category could have different scores, which may affect users’ route choices. In this paper, we study a novel variant of OSR query, namely
Rating Constrained Optimal Sequenced Route query (RCOSR)
, in which the rating score of each POI in the optimal sequenced route should exceed the query threshold. To efficiently process RCOSR queries, we first extend the existing TD-OSR algorithm to propose a baseline method, called
MTDOSR
. To tackle the shortcomings of MTDOSR, we try to design a new RCOSR algorithm, namely
Optimal Subroute Expansion (OSE) Algorithm
. To enhance the OSE algorithm, we propose a
Reference Node Inverted Index (RNII)
to accelerate the distance computation of POI pairs in OSE and quickly retrieve the POIs of each category. To make full use of the OSE and RNII, we further propose a new efficient RCOSR algorithm, called
Recurrent Optimal Subroute Expansion (ROSE)
, which recurrently utilizes OSE to compute the current optimal route as the guiding path and update the distance of POI pairs to guide the expansion. Then, we extend our techniques to handle a variation of RCOSR query, namely RC
k
OSR query. The experimental results demonstrate that the proposed algorithm significantly outperforms the existing approaches.</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Invited Papers</subject><subject>Physics</subject><subject>Queries</subject><subject>Query processing</subject><subject>Route planning</subject><subject>Statistics for Engineering</subject><subject>Systems and Data Security</subject><issn>2364-1185</issn><issn>2364-1541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UMtOwzAQtBBIVKU_wMkSZ4PXXjvJEVU8KlVqgXK2HMeBltIEOxHq3-MSEDdOu6udmZ0dQs6BXwLn2VVE4FAwLgTjHLKMqSMyElIjA4Vw_NtDrk7JJMYN51ykCVGPSL5qWvpGF223frdb-uQ_er9zvqKPTd95-tD7sKef6-6VLhczugy-9uEAiGfkpLbb6Cc_dUyeb29W03s2X9zNptdz5lDqjtWau9yjtBVKrKsaawfoixIK5VVpocicLSxYbVGkjfZVhlDUFeZWgXOlHJOLQbcNTfIWO7Np-rBLJ43QUgHPkYuEEgPKhSbG5NK0IT0U9ga4OYRkhpBMCsl8h2RUIsmBFBN49-LDn_Q_rC9KmmiE</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Zhu, Huaijie</creator><creator>Li, Wenbin</creator><creator>Liu, Wei</creator><creator>Yin, Jian</creator><creator>Xu, Jianliang</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220301</creationdate><title>Top k Optimal Sequenced Route Query with POI Preferences</title><author>Zhu, Huaijie ; Li, Wenbin ; Liu, Wei ; Yin, Jian ; Xu, Jianliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-f60c8e43ad434fdf4fc14e9b195e5ba197ca9a1a6a42c146ed7419fd48a51ccb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Invited Papers</topic><topic>Physics</topic><topic>Queries</topic><topic>Query processing</topic><topic>Route planning</topic><topic>Statistics for Engineering</topic><topic>Systems and Data Security</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Huaijie</creatorcontrib><creatorcontrib>Li, Wenbin</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Yin, Jian</creatorcontrib><creatorcontrib>Xu, Jianliang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Data science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Huaijie</au><au>Li, Wenbin</au><au>Liu, Wei</au><au>Yin, Jian</au><au>Xu, Jianliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Top k Optimal Sequenced Route Query with POI Preferences</atitle><jtitle>Data science and engineering</jtitle><stitle>Data Sci. Eng</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>7</volume><issue>1</issue><spage>3</spage><epage>15</epage><pages>3-15</pages><issn>2364-1185</issn><eissn>2364-1541</eissn><abstract>The optimal sequenced route (OSR) query, as a popular problem in route planning for smart cities, searches for a minimum-distance route passing through several POIs in a specific order from a starting position. In reality, POIs are usually rated, which helps users in making decisions. Existing OSR queries neglect the fact that the POIs in the same category could have different scores, which may affect users’ route choices. In this paper, we study a novel variant of OSR query, namely
Rating Constrained Optimal Sequenced Route query (RCOSR)
, in which the rating score of each POI in the optimal sequenced route should exceed the query threshold. To efficiently process RCOSR queries, we first extend the existing TD-OSR algorithm to propose a baseline method, called
MTDOSR
. To tackle the shortcomings of MTDOSR, we try to design a new RCOSR algorithm, namely
Optimal Subroute Expansion (OSE) Algorithm
. To enhance the OSE algorithm, we propose a
Reference Node Inverted Index (RNII)
to accelerate the distance computation of POI pairs in OSE and quickly retrieve the POIs of each category. To make full use of the OSE and RNII, we further propose a new efficient RCOSR algorithm, called
Recurrent Optimal Subroute Expansion (ROSE)
, which recurrently utilizes OSE to compute the current optimal route as the guiding path and update the distance of POI pairs to guide the expansion. Then, we extend our techniques to handle a variation of RCOSR query, namely RC
k
OSR query. The experimental results demonstrate that the proposed algorithm significantly outperforms the existing approaches.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s41019-022-00177-5</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2364-1185 |
ispartof | Data science and engineering, 2022-03, Vol.7 (1), p.3-15 |
issn | 2364-1185 2364-1541 |
language | eng |
recordid | cdi_proquest_journals_2635108402 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithm Analysis and Problem Complexity Algorithms Artificial Intelligence Chemistry and Earth Sciences Computer Science Data Mining and Knowledge Discovery Database Management Invited Papers Physics Queries Query processing Route planning Statistics for Engineering Systems and Data Security |
title | Top k Optimal Sequenced Route Query with POI Preferences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Top%20k%20Optimal%20Sequenced%20Route%20Query%20with%20POI%20Preferences&rft.jtitle=Data%20science%20and%20engineering&rft.au=Zhu,%20Huaijie&rft.date=2022-03-01&rft.volume=7&rft.issue=1&rft.spage=3&rft.epage=15&rft.pages=3-15&rft.issn=2364-1185&rft.eissn=2364-1541&rft_id=info:doi/10.1007/s41019-022-00177-5&rft_dat=%3Cproquest_cross%3E2635108402%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635108402&rft_id=info:pmid/&rfr_iscdi=true |