Realistic Design Studies on a 300-GHz, 1-MW, DEMO-Class Conventional-Cavity Gyrotron

This article presents the realistic initial design studies of a 300-GHz, 1-MW, conventional-cavity gyrotron for its probable application in the next-generation thermonuclear fusion reactors. Keeping the design goals, parameters, and constraints in view, the very high-order TE 49,18 mode is chosen as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2022-03, Vol.69 (3), p.1442-1450
Hauptverfasser: Mondal, Debasish, Yuvaraj, S., Rawat, Meenakshi, Thumm, M. K. A., Kartikeyan, M. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1450
container_issue 3
container_start_page 1442
container_title IEEE transactions on electron devices
container_volume 69
creator Mondal, Debasish
Yuvaraj, S.
Rawat, Meenakshi
Thumm, M. K. A.
Kartikeyan, M. V.
description This article presents the realistic initial design studies of a 300-GHz, 1-MW, conventional-cavity gyrotron for its probable application in the next-generation thermonuclear fusion reactors. Keeping the design goals, parameters, and constraints in view, the very high-order TE 49,18 mode is chosen as the operating mode after a careful mode-selection calculation considering realistic ohmic cavity losses. After mode selection and mode competition studies, the cold-cavity design and initial design of a triode-type magnetron injection gun (T-MIG) and a gyrotron magnet are carried out and an electron beam radius of 8.11 mm is obtained with 2.4% velocity spread. Furthermore, investigation on RF behavior of the cavity is performed with the T-MIG beam parameters. By varying the nominal beam parameters, single-mode self-consistent calculations are conducted and achieved the desired output power. Then, multimode time-dependent self-consistent calculations are carried out before and after space-charge neutralization (SCN) with realistic velocity spread (up to 6%) and different beam radii for the assessment of the start-up scenario. Before SCN without velocity spread, the beam voltage is depressed to 70.08 kV and 0.72-MW output power is obtained, whereas with velocity spread (6%), 0.69-MW output power is obtained with 8.11 mm of beam radius. After 60% of SCN in the start-up scenario with velocity spread (6%), the beam voltage increases to 74.83 kV, and thereby, an output power of 0.91 MW is obtained.
doi_str_mv 10.1109/TED.2022.3146101
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2635046512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9705496</ieee_id><sourcerecordid>2635046512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b399d5db547c207cb4b5e66fa972a0d72d2427eb5374c41651ac6c062d440e073</originalsourceid><addsrcrecordid>eNo9kM9LAkEUgIcoyKx70GWgq2NvfjvHWE0DRSij4zC7O8bItmM7q2B_fStKp8eD73s8PoTuKQwpBfO0moyHDBgbcioUBXqBelRKTYwS6hL1AOiIGD7i1-gmpU23KiFYD63evKtCakOBxz6Frxq_t7sy-IRjjR3mAGQ6-x1gShafAzyeLJYkq1xKOIv13tdtiLWrSOb2oT3g6aGJbRPrW3S1dlXyd-fZRx8vk1U2I_Pl9DV7npOCGdqSnBtTyjKXQhcMdJGLXHql1s5o5qDUrGSCaZ9LrkUhqJLUFaoAxUohwIPmffR4urtt4s_Op9Zu4q7pHkqWKS5BdArrKDhRRRNTavzabpvw7ZqDpWCP7WzXzh7b2XO7Tnk4KcF7_48bDVIYxf8A_K9m-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635046512</pqid></control><display><type>article</type><title>Realistic Design Studies on a 300-GHz, 1-MW, DEMO-Class Conventional-Cavity Gyrotron</title><source>IEEE Electronic Library (IEL)</source><creator>Mondal, Debasish ; Yuvaraj, S. ; Rawat, Meenakshi ; Thumm, M. K. A. ; Kartikeyan, M. V.</creator><creatorcontrib>Mondal, Debasish ; Yuvaraj, S. ; Rawat, Meenakshi ; Thumm, M. K. A. ; Kartikeyan, M. V.</creatorcontrib><description>This article presents the realistic initial design studies of a 300-GHz, 1-MW, conventional-cavity gyrotron for its probable application in the next-generation thermonuclear fusion reactors. Keeping the design goals, parameters, and constraints in view, the very high-order TE 49,18 mode is chosen as the operating mode after a careful mode-selection calculation considering realistic ohmic cavity losses. After mode selection and mode competition studies, the cold-cavity design and initial design of a triode-type magnetron injection gun (T-MIG) and a gyrotron magnet are carried out and an electron beam radius of 8.11 mm is obtained with 2.4% velocity spread. Furthermore, investigation on RF behavior of the cavity is performed with the T-MIG beam parameters. By varying the nominal beam parameters, single-mode self-consistent calculations are conducted and achieved the desired output power. Then, multimode time-dependent self-consistent calculations are carried out before and after space-charge neutralization (SCN) with realistic velocity spread (up to 6%) and different beam radii for the assessment of the start-up scenario. Before SCN without velocity spread, the beam voltage is depressed to 70.08 kV and 0.72-MW output power is obtained, whereas with velocity spread (6%), 0.69-MW output power is obtained with 8.11 mm of beam radius. After 60% of SCN in the start-up scenario with velocity spread (6%), the beam voltage increases to 74.83 kV, and thereby, an output power of 0.91 MW is obtained.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3146101</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Conventional-cavity gyrotron ; Cyclotron resonance devices ; DEMO tokamak ; Design parameters ; Electric potential ; Electron beams ; electron cyclotron resonance heating (ECRH) ; Electrons ; Fusion reactors ; Gyrotrons ; Loading ; Mathematical analysis ; Modal choice ; Plasmas ; Power generation ; Radio frequency ; space-charge neutralization (SCN) ; Thermonuclear fusion ; Tokamak devices ; triode-type magnetron injection gun (T-MIG) ; Velocity ; Voltage</subject><ispartof>IEEE transactions on electron devices, 2022-03, Vol.69 (3), p.1442-1450</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b399d5db547c207cb4b5e66fa972a0d72d2427eb5374c41651ac6c062d440e073</citedby><cites>FETCH-LOGICAL-c291t-b399d5db547c207cb4b5e66fa972a0d72d2427eb5374c41651ac6c062d440e073</cites><orcidid>0000-0003-1909-3166 ; 0000-0001-8238-7592 ; 0000-0002-8427-1662 ; 0000-0002-7115-8900 ; 0000-0002-6155-8150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9705496$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9705496$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mondal, Debasish</creatorcontrib><creatorcontrib>Yuvaraj, S.</creatorcontrib><creatorcontrib>Rawat, Meenakshi</creatorcontrib><creatorcontrib>Thumm, M. K. A.</creatorcontrib><creatorcontrib>Kartikeyan, M. V.</creatorcontrib><title>Realistic Design Studies on a 300-GHz, 1-MW, DEMO-Class Conventional-Cavity Gyrotron</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>This article presents the realistic initial design studies of a 300-GHz, 1-MW, conventional-cavity gyrotron for its probable application in the next-generation thermonuclear fusion reactors. Keeping the design goals, parameters, and constraints in view, the very high-order TE 49,18 mode is chosen as the operating mode after a careful mode-selection calculation considering realistic ohmic cavity losses. After mode selection and mode competition studies, the cold-cavity design and initial design of a triode-type magnetron injection gun (T-MIG) and a gyrotron magnet are carried out and an electron beam radius of 8.11 mm is obtained with 2.4% velocity spread. Furthermore, investigation on RF behavior of the cavity is performed with the T-MIG beam parameters. By varying the nominal beam parameters, single-mode self-consistent calculations are conducted and achieved the desired output power. Then, multimode time-dependent self-consistent calculations are carried out before and after space-charge neutralization (SCN) with realistic velocity spread (up to 6%) and different beam radii for the assessment of the start-up scenario. Before SCN without velocity spread, the beam voltage is depressed to 70.08 kV and 0.72-MW output power is obtained, whereas with velocity spread (6%), 0.69-MW output power is obtained with 8.11 mm of beam radius. After 60% of SCN in the start-up scenario with velocity spread (6%), the beam voltage increases to 74.83 kV, and thereby, an output power of 0.91 MW is obtained.</description><subject>Conventional-cavity gyrotron</subject><subject>Cyclotron resonance devices</subject><subject>DEMO tokamak</subject><subject>Design parameters</subject><subject>Electric potential</subject><subject>Electron beams</subject><subject>electron cyclotron resonance heating (ECRH)</subject><subject>Electrons</subject><subject>Fusion reactors</subject><subject>Gyrotrons</subject><subject>Loading</subject><subject>Mathematical analysis</subject><subject>Modal choice</subject><subject>Plasmas</subject><subject>Power generation</subject><subject>Radio frequency</subject><subject>space-charge neutralization (SCN)</subject><subject>Thermonuclear fusion</subject><subject>Tokamak devices</subject><subject>triode-type magnetron injection gun (T-MIG)</subject><subject>Velocity</subject><subject>Voltage</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LAkEUgIcoyKx70GWgq2NvfjvHWE0DRSij4zC7O8bItmM7q2B_fStKp8eD73s8PoTuKQwpBfO0moyHDBgbcioUBXqBelRKTYwS6hL1AOiIGD7i1-gmpU23KiFYD63evKtCakOBxz6Frxq_t7sy-IRjjR3mAGQ6-x1gShafAzyeLJYkq1xKOIv13tdtiLWrSOb2oT3g6aGJbRPrW3S1dlXyd-fZRx8vk1U2I_Pl9DV7npOCGdqSnBtTyjKXQhcMdJGLXHql1s5o5qDUrGSCaZ9LrkUhqJLUFaoAxUohwIPmffR4urtt4s_Op9Zu4q7pHkqWKS5BdArrKDhRRRNTavzabpvw7ZqDpWCP7WzXzh7b2XO7Tnk4KcF7_48bDVIYxf8A_K9m-g</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Mondal, Debasish</creator><creator>Yuvaraj, S.</creator><creator>Rawat, Meenakshi</creator><creator>Thumm, M. K. A.</creator><creator>Kartikeyan, M. V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1909-3166</orcidid><orcidid>https://orcid.org/0000-0001-8238-7592</orcidid><orcidid>https://orcid.org/0000-0002-8427-1662</orcidid><orcidid>https://orcid.org/0000-0002-7115-8900</orcidid><orcidid>https://orcid.org/0000-0002-6155-8150</orcidid></search><sort><creationdate>20220301</creationdate><title>Realistic Design Studies on a 300-GHz, 1-MW, DEMO-Class Conventional-Cavity Gyrotron</title><author>Mondal, Debasish ; Yuvaraj, S. ; Rawat, Meenakshi ; Thumm, M. K. A. ; Kartikeyan, M. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b399d5db547c207cb4b5e66fa972a0d72d2427eb5374c41651ac6c062d440e073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Conventional-cavity gyrotron</topic><topic>Cyclotron resonance devices</topic><topic>DEMO tokamak</topic><topic>Design parameters</topic><topic>Electric potential</topic><topic>Electron beams</topic><topic>electron cyclotron resonance heating (ECRH)</topic><topic>Electrons</topic><topic>Fusion reactors</topic><topic>Gyrotrons</topic><topic>Loading</topic><topic>Mathematical analysis</topic><topic>Modal choice</topic><topic>Plasmas</topic><topic>Power generation</topic><topic>Radio frequency</topic><topic>space-charge neutralization (SCN)</topic><topic>Thermonuclear fusion</topic><topic>Tokamak devices</topic><topic>triode-type magnetron injection gun (T-MIG)</topic><topic>Velocity</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mondal, Debasish</creatorcontrib><creatorcontrib>Yuvaraj, S.</creatorcontrib><creatorcontrib>Rawat, Meenakshi</creatorcontrib><creatorcontrib>Thumm, M. K. A.</creatorcontrib><creatorcontrib>Kartikeyan, M. V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mondal, Debasish</au><au>Yuvaraj, S.</au><au>Rawat, Meenakshi</au><au>Thumm, M. K. A.</au><au>Kartikeyan, M. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realistic Design Studies on a 300-GHz, 1-MW, DEMO-Class Conventional-Cavity Gyrotron</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>69</volume><issue>3</issue><spage>1442</spage><epage>1450</epage><pages>1442-1450</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>This article presents the realistic initial design studies of a 300-GHz, 1-MW, conventional-cavity gyrotron for its probable application in the next-generation thermonuclear fusion reactors. Keeping the design goals, parameters, and constraints in view, the very high-order TE 49,18 mode is chosen as the operating mode after a careful mode-selection calculation considering realistic ohmic cavity losses. After mode selection and mode competition studies, the cold-cavity design and initial design of a triode-type magnetron injection gun (T-MIG) and a gyrotron magnet are carried out and an electron beam radius of 8.11 mm is obtained with 2.4% velocity spread. Furthermore, investigation on RF behavior of the cavity is performed with the T-MIG beam parameters. By varying the nominal beam parameters, single-mode self-consistent calculations are conducted and achieved the desired output power. Then, multimode time-dependent self-consistent calculations are carried out before and after space-charge neutralization (SCN) with realistic velocity spread (up to 6%) and different beam radii for the assessment of the start-up scenario. Before SCN without velocity spread, the beam voltage is depressed to 70.08 kV and 0.72-MW output power is obtained, whereas with velocity spread (6%), 0.69-MW output power is obtained with 8.11 mm of beam radius. After 60% of SCN in the start-up scenario with velocity spread (6%), the beam voltage increases to 74.83 kV, and thereby, an output power of 0.91 MW is obtained.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3146101</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1909-3166</orcidid><orcidid>https://orcid.org/0000-0001-8238-7592</orcidid><orcidid>https://orcid.org/0000-0002-8427-1662</orcidid><orcidid>https://orcid.org/0000-0002-7115-8900</orcidid><orcidid>https://orcid.org/0000-0002-6155-8150</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2022-03, Vol.69 (3), p.1442-1450
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_2635046512
source IEEE Electronic Library (IEL)
subjects Conventional-cavity gyrotron
Cyclotron resonance devices
DEMO tokamak
Design parameters
Electric potential
Electron beams
electron cyclotron resonance heating (ECRH)
Electrons
Fusion reactors
Gyrotrons
Loading
Mathematical analysis
Modal choice
Plasmas
Power generation
Radio frequency
space-charge neutralization (SCN)
Thermonuclear fusion
Tokamak devices
triode-type magnetron injection gun (T-MIG)
Velocity
Voltage
title Realistic Design Studies on a 300-GHz, 1-MW, DEMO-Class Conventional-Cavity Gyrotron
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A22%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realistic%20Design%20Studies%20on%20a%20300-GHz,%201-MW,%20DEMO-Class%20Conventional-Cavity%20Gyrotron&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Mondal,%20Debasish&rft.date=2022-03-01&rft.volume=69&rft.issue=3&rft.spage=1442&rft.epage=1450&rft.pages=1442-1450&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3146101&rft_dat=%3Cproquest_RIE%3E2635046512%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635046512&rft_id=info:pmid/&rft_ieee_id=9705496&rfr_iscdi=true