Realistic Design Studies on a 300-GHz, 1-MW, DEMO-Class Conventional-Cavity Gyrotron
This article presents the realistic initial design studies of a 300-GHz, 1-MW, conventional-cavity gyrotron for its probable application in the next-generation thermonuclear fusion reactors. Keeping the design goals, parameters, and constraints in view, the very high-order TE 49,18 mode is chosen as...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2022-03, Vol.69 (3), p.1442-1450 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1450 |
---|---|
container_issue | 3 |
container_start_page | 1442 |
container_title | IEEE transactions on electron devices |
container_volume | 69 |
creator | Mondal, Debasish Yuvaraj, S. Rawat, Meenakshi Thumm, M. K. A. Kartikeyan, M. V. |
description | This article presents the realistic initial design studies of a 300-GHz, 1-MW, conventional-cavity gyrotron for its probable application in the next-generation thermonuclear fusion reactors. Keeping the design goals, parameters, and constraints in view, the very high-order TE 49,18 mode is chosen as the operating mode after a careful mode-selection calculation considering realistic ohmic cavity losses. After mode selection and mode competition studies, the cold-cavity design and initial design of a triode-type magnetron injection gun (T-MIG) and a gyrotron magnet are carried out and an electron beam radius of 8.11 mm is obtained with 2.4% velocity spread. Furthermore, investigation on RF behavior of the cavity is performed with the T-MIG beam parameters. By varying the nominal beam parameters, single-mode self-consistent calculations are conducted and achieved the desired output power. Then, multimode time-dependent self-consistent calculations are carried out before and after space-charge neutralization (SCN) with realistic velocity spread (up to 6%) and different beam radii for the assessment of the start-up scenario. Before SCN without velocity spread, the beam voltage is depressed to 70.08 kV and 0.72-MW output power is obtained, whereas with velocity spread (6%), 0.69-MW output power is obtained with 8.11 mm of beam radius. After 60% of SCN in the start-up scenario with velocity spread (6%), the beam voltage increases to 74.83 kV, and thereby, an output power of 0.91 MW is obtained. |
doi_str_mv | 10.1109/TED.2022.3146101 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2635046512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9705496</ieee_id><sourcerecordid>2635046512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b399d5db547c207cb4b5e66fa972a0d72d2427eb5374c41651ac6c062d440e073</originalsourceid><addsrcrecordid>eNo9kM9LAkEUgIcoyKx70GWgq2NvfjvHWE0DRSij4zC7O8bItmM7q2B_fStKp8eD73s8PoTuKQwpBfO0moyHDBgbcioUBXqBelRKTYwS6hL1AOiIGD7i1-gmpU23KiFYD63evKtCakOBxz6Frxq_t7sy-IRjjR3mAGQ6-x1gShafAzyeLJYkq1xKOIv13tdtiLWrSOb2oT3g6aGJbRPrW3S1dlXyd-fZRx8vk1U2I_Pl9DV7npOCGdqSnBtTyjKXQhcMdJGLXHql1s5o5qDUrGSCaZ9LrkUhqJLUFaoAxUohwIPmffR4urtt4s_Op9Zu4q7pHkqWKS5BdArrKDhRRRNTavzabpvw7ZqDpWCP7WzXzh7b2XO7Tnk4KcF7_48bDVIYxf8A_K9m-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635046512</pqid></control><display><type>article</type><title>Realistic Design Studies on a 300-GHz, 1-MW, DEMO-Class Conventional-Cavity Gyrotron</title><source>IEEE Electronic Library (IEL)</source><creator>Mondal, Debasish ; Yuvaraj, S. ; Rawat, Meenakshi ; Thumm, M. K. A. ; Kartikeyan, M. V.</creator><creatorcontrib>Mondal, Debasish ; Yuvaraj, S. ; Rawat, Meenakshi ; Thumm, M. K. A. ; Kartikeyan, M. V.</creatorcontrib><description>This article presents the realistic initial design studies of a 300-GHz, 1-MW, conventional-cavity gyrotron for its probable application in the next-generation thermonuclear fusion reactors. Keeping the design goals, parameters, and constraints in view, the very high-order TE 49,18 mode is chosen as the operating mode after a careful mode-selection calculation considering realistic ohmic cavity losses. After mode selection and mode competition studies, the cold-cavity design and initial design of a triode-type magnetron injection gun (T-MIG) and a gyrotron magnet are carried out and an electron beam radius of 8.11 mm is obtained with 2.4% velocity spread. Furthermore, investigation on RF behavior of the cavity is performed with the T-MIG beam parameters. By varying the nominal beam parameters, single-mode self-consistent calculations are conducted and achieved the desired output power. Then, multimode time-dependent self-consistent calculations are carried out before and after space-charge neutralization (SCN) with realistic velocity spread (up to 6%) and different beam radii for the assessment of the start-up scenario. Before SCN without velocity spread, the beam voltage is depressed to 70.08 kV and 0.72-MW output power is obtained, whereas with velocity spread (6%), 0.69-MW output power is obtained with 8.11 mm of beam radius. After 60% of SCN in the start-up scenario with velocity spread (6%), the beam voltage increases to 74.83 kV, and thereby, an output power of 0.91 MW is obtained.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3146101</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Conventional-cavity gyrotron ; Cyclotron resonance devices ; DEMO tokamak ; Design parameters ; Electric potential ; Electron beams ; electron cyclotron resonance heating (ECRH) ; Electrons ; Fusion reactors ; Gyrotrons ; Loading ; Mathematical analysis ; Modal choice ; Plasmas ; Power generation ; Radio frequency ; space-charge neutralization (SCN) ; Thermonuclear fusion ; Tokamak devices ; triode-type magnetron injection gun (T-MIG) ; Velocity ; Voltage</subject><ispartof>IEEE transactions on electron devices, 2022-03, Vol.69 (3), p.1442-1450</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b399d5db547c207cb4b5e66fa972a0d72d2427eb5374c41651ac6c062d440e073</citedby><cites>FETCH-LOGICAL-c291t-b399d5db547c207cb4b5e66fa972a0d72d2427eb5374c41651ac6c062d440e073</cites><orcidid>0000-0003-1909-3166 ; 0000-0001-8238-7592 ; 0000-0002-8427-1662 ; 0000-0002-7115-8900 ; 0000-0002-6155-8150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9705496$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9705496$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mondal, Debasish</creatorcontrib><creatorcontrib>Yuvaraj, S.</creatorcontrib><creatorcontrib>Rawat, Meenakshi</creatorcontrib><creatorcontrib>Thumm, M. K. A.</creatorcontrib><creatorcontrib>Kartikeyan, M. V.</creatorcontrib><title>Realistic Design Studies on a 300-GHz, 1-MW, DEMO-Class Conventional-Cavity Gyrotron</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>This article presents the realistic initial design studies of a 300-GHz, 1-MW, conventional-cavity gyrotron for its probable application in the next-generation thermonuclear fusion reactors. Keeping the design goals, parameters, and constraints in view, the very high-order TE 49,18 mode is chosen as the operating mode after a careful mode-selection calculation considering realistic ohmic cavity losses. After mode selection and mode competition studies, the cold-cavity design and initial design of a triode-type magnetron injection gun (T-MIG) and a gyrotron magnet are carried out and an electron beam radius of 8.11 mm is obtained with 2.4% velocity spread. Furthermore, investigation on RF behavior of the cavity is performed with the T-MIG beam parameters. By varying the nominal beam parameters, single-mode self-consistent calculations are conducted and achieved the desired output power. Then, multimode time-dependent self-consistent calculations are carried out before and after space-charge neutralization (SCN) with realistic velocity spread (up to 6%) and different beam radii for the assessment of the start-up scenario. Before SCN without velocity spread, the beam voltage is depressed to 70.08 kV and 0.72-MW output power is obtained, whereas with velocity spread (6%), 0.69-MW output power is obtained with 8.11 mm of beam radius. After 60% of SCN in the start-up scenario with velocity spread (6%), the beam voltage increases to 74.83 kV, and thereby, an output power of 0.91 MW is obtained.</description><subject>Conventional-cavity gyrotron</subject><subject>Cyclotron resonance devices</subject><subject>DEMO tokamak</subject><subject>Design parameters</subject><subject>Electric potential</subject><subject>Electron beams</subject><subject>electron cyclotron resonance heating (ECRH)</subject><subject>Electrons</subject><subject>Fusion reactors</subject><subject>Gyrotrons</subject><subject>Loading</subject><subject>Mathematical analysis</subject><subject>Modal choice</subject><subject>Plasmas</subject><subject>Power generation</subject><subject>Radio frequency</subject><subject>space-charge neutralization (SCN)</subject><subject>Thermonuclear fusion</subject><subject>Tokamak devices</subject><subject>triode-type magnetron injection gun (T-MIG)</subject><subject>Velocity</subject><subject>Voltage</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LAkEUgIcoyKx70GWgq2NvfjvHWE0DRSij4zC7O8bItmM7q2B_fStKp8eD73s8PoTuKQwpBfO0moyHDBgbcioUBXqBelRKTYwS6hL1AOiIGD7i1-gmpU23KiFYD63evKtCakOBxz6Frxq_t7sy-IRjjR3mAGQ6-x1gShafAzyeLJYkq1xKOIv13tdtiLWrSOb2oT3g6aGJbRPrW3S1dlXyd-fZRx8vk1U2I_Pl9DV7npOCGdqSnBtTyjKXQhcMdJGLXHql1s5o5qDUrGSCaZ9LrkUhqJLUFaoAxUohwIPmffR4urtt4s_Op9Zu4q7pHkqWKS5BdArrKDhRRRNTavzabpvw7ZqDpWCP7WzXzh7b2XO7Tnk4KcF7_48bDVIYxf8A_K9m-g</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Mondal, Debasish</creator><creator>Yuvaraj, S.</creator><creator>Rawat, Meenakshi</creator><creator>Thumm, M. K. A.</creator><creator>Kartikeyan, M. V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1909-3166</orcidid><orcidid>https://orcid.org/0000-0001-8238-7592</orcidid><orcidid>https://orcid.org/0000-0002-8427-1662</orcidid><orcidid>https://orcid.org/0000-0002-7115-8900</orcidid><orcidid>https://orcid.org/0000-0002-6155-8150</orcidid></search><sort><creationdate>20220301</creationdate><title>Realistic Design Studies on a 300-GHz, 1-MW, DEMO-Class Conventional-Cavity Gyrotron</title><author>Mondal, Debasish ; Yuvaraj, S. ; Rawat, Meenakshi ; Thumm, M. K. A. ; Kartikeyan, M. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b399d5db547c207cb4b5e66fa972a0d72d2427eb5374c41651ac6c062d440e073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Conventional-cavity gyrotron</topic><topic>Cyclotron resonance devices</topic><topic>DEMO tokamak</topic><topic>Design parameters</topic><topic>Electric potential</topic><topic>Electron beams</topic><topic>electron cyclotron resonance heating (ECRH)</topic><topic>Electrons</topic><topic>Fusion reactors</topic><topic>Gyrotrons</topic><topic>Loading</topic><topic>Mathematical analysis</topic><topic>Modal choice</topic><topic>Plasmas</topic><topic>Power generation</topic><topic>Radio frequency</topic><topic>space-charge neutralization (SCN)</topic><topic>Thermonuclear fusion</topic><topic>Tokamak devices</topic><topic>triode-type magnetron injection gun (T-MIG)</topic><topic>Velocity</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mondal, Debasish</creatorcontrib><creatorcontrib>Yuvaraj, S.</creatorcontrib><creatorcontrib>Rawat, Meenakshi</creatorcontrib><creatorcontrib>Thumm, M. K. A.</creatorcontrib><creatorcontrib>Kartikeyan, M. V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mondal, Debasish</au><au>Yuvaraj, S.</au><au>Rawat, Meenakshi</au><au>Thumm, M. K. A.</au><au>Kartikeyan, M. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realistic Design Studies on a 300-GHz, 1-MW, DEMO-Class Conventional-Cavity Gyrotron</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>69</volume><issue>3</issue><spage>1442</spage><epage>1450</epage><pages>1442-1450</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>This article presents the realistic initial design studies of a 300-GHz, 1-MW, conventional-cavity gyrotron for its probable application in the next-generation thermonuclear fusion reactors. Keeping the design goals, parameters, and constraints in view, the very high-order TE 49,18 mode is chosen as the operating mode after a careful mode-selection calculation considering realistic ohmic cavity losses. After mode selection and mode competition studies, the cold-cavity design and initial design of a triode-type magnetron injection gun (T-MIG) and a gyrotron magnet are carried out and an electron beam radius of 8.11 mm is obtained with 2.4% velocity spread. Furthermore, investigation on RF behavior of the cavity is performed with the T-MIG beam parameters. By varying the nominal beam parameters, single-mode self-consistent calculations are conducted and achieved the desired output power. Then, multimode time-dependent self-consistent calculations are carried out before and after space-charge neutralization (SCN) with realistic velocity spread (up to 6%) and different beam radii for the assessment of the start-up scenario. Before SCN without velocity spread, the beam voltage is depressed to 70.08 kV and 0.72-MW output power is obtained, whereas with velocity spread (6%), 0.69-MW output power is obtained with 8.11 mm of beam radius. After 60% of SCN in the start-up scenario with velocity spread (6%), the beam voltage increases to 74.83 kV, and thereby, an output power of 0.91 MW is obtained.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3146101</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1909-3166</orcidid><orcidid>https://orcid.org/0000-0001-8238-7592</orcidid><orcidid>https://orcid.org/0000-0002-8427-1662</orcidid><orcidid>https://orcid.org/0000-0002-7115-8900</orcidid><orcidid>https://orcid.org/0000-0002-6155-8150</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2022-03, Vol.69 (3), p.1442-1450 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_journals_2635046512 |
source | IEEE Electronic Library (IEL) |
subjects | Conventional-cavity gyrotron Cyclotron resonance devices DEMO tokamak Design parameters Electric potential Electron beams electron cyclotron resonance heating (ECRH) Electrons Fusion reactors Gyrotrons Loading Mathematical analysis Modal choice Plasmas Power generation Radio frequency space-charge neutralization (SCN) Thermonuclear fusion Tokamak devices triode-type magnetron injection gun (T-MIG) Velocity Voltage |
title | Realistic Design Studies on a 300-GHz, 1-MW, DEMO-Class Conventional-Cavity Gyrotron |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A22%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realistic%20Design%20Studies%20on%20a%20300-GHz,%201-MW,%20DEMO-Class%20Conventional-Cavity%20Gyrotron&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Mondal,%20Debasish&rft.date=2022-03-01&rft.volume=69&rft.issue=3&rft.spage=1442&rft.epage=1450&rft.pages=1442-1450&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3146101&rft_dat=%3Cproquest_RIE%3E2635046512%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635046512&rft_id=info:pmid/&rft_ieee_id=9705496&rfr_iscdi=true |