Realistic Design Studies on a 300-GHz, 1-MW, DEMO-Class Conventional-Cavity Gyrotron

This article presents the realistic initial design studies of a 300-GHz, 1-MW, conventional-cavity gyrotron for its probable application in the next-generation thermonuclear fusion reactors. Keeping the design goals, parameters, and constraints in view, the very high-order TE 49,18 mode is chosen as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2022-03, Vol.69 (3), p.1442-1450
Hauptverfasser: Mondal, Debasish, Yuvaraj, S., Rawat, Meenakshi, Thumm, M. K. A., Kartikeyan, M. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents the realistic initial design studies of a 300-GHz, 1-MW, conventional-cavity gyrotron for its probable application in the next-generation thermonuclear fusion reactors. Keeping the design goals, parameters, and constraints in view, the very high-order TE 49,18 mode is chosen as the operating mode after a careful mode-selection calculation considering realistic ohmic cavity losses. After mode selection and mode competition studies, the cold-cavity design and initial design of a triode-type magnetron injection gun (T-MIG) and a gyrotron magnet are carried out and an electron beam radius of 8.11 mm is obtained with 2.4% velocity spread. Furthermore, investigation on RF behavior of the cavity is performed with the T-MIG beam parameters. By varying the nominal beam parameters, single-mode self-consistent calculations are conducted and achieved the desired output power. Then, multimode time-dependent self-consistent calculations are carried out before and after space-charge neutralization (SCN) with realistic velocity spread (up to 6%) and different beam radii for the assessment of the start-up scenario. Before SCN without velocity spread, the beam voltage is depressed to 70.08 kV and 0.72-MW output power is obtained, whereas with velocity spread (6%), 0.69-MW output power is obtained with 8.11 mm of beam radius. After 60% of SCN in the start-up scenario with velocity spread (6%), the beam voltage increases to 74.83 kV, and thereby, an output power of 0.91 MW is obtained.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2022.3146101