Polarity Classification of Social Media Feeds Using Incremental Learning — A Deep Learning Approach

Online feeds are streamed continuously in batches with varied polarities at varying times. The system handling the online feeds must be trained to classify all the varying polarities occurring dynamically. The polarity classification system designed for the online feeds must address two significant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2022/03/01, Vol.E105.A(3), pp.584-593
Hauptverfasser: JAGANATHAN, Suresh, MADHUSUDHANAN, Sathya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Online feeds are streamed continuously in batches with varied polarities at varying times. The system handling the online feeds must be trained to classify all the varying polarities occurring dynamically. The polarity classification system designed for the online feeds must address two significant challenges: i) stability-plasticity, ii) category-proliferation. The challenges faced in the polarity classification of online feeds can be addressed using the technique of incremental learning, which serves to learn new classes dynamically and also retains the previously learned knowledge. This paper proposes a new incremental learning methodology, ILOF (Incremental Learning of Online Feeds) to classify the feeds by adopting Deep Learning Techniques such as RNN (Recurrent Neural Networks) and LSTM (Long Short Term Memory) and also ELM (Extreme Learning Machine) for addressing the above stated problems. The proposed method creates a separate model for each batch using ELM and incrementally learns from the trained batches. The training of each batch avoids the retraining of old feeds, thus saving training time and memory space. The trained feeds can be discarded when new batch of feeds arrives. Experiments are carried out using the standard datasets comprising of long feeds (IMDB, Sentiment140) and short feeds (Twitter, WhatsApp, and Twitter airline sentiment) and the proposed method showed positive results in terms of better performance and accuracy.
ISSN:0916-8508
1745-1337
DOI:10.1587/transfun.2021EAP1046