Large-Signal Behavior Modeling of GaN P-HEMT Based on GA-ELM Neural Network

The Genetic Algorithm-Extreme Learning Machine (GA-ELM) neural network algorithm is proposed to model the relevant characteristics of GaN pseudomorphic high electron mobility transistor (P-HEMT) large signal. This algorithm solves the over-fitting problem of the Back Propagation (BP) neural network...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2022-04, Vol.41 (4), p.1834-1847
Hauptverfasser: Wang, Shaowei, Zhang, Jincan, Liu, Min, Liu, Bo, Wang, Jinchan, Yang, Shi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Genetic Algorithm-Extreme Learning Machine (GA-ELM) neural network algorithm is proposed to model the relevant characteristics of GaN pseudomorphic high electron mobility transistor (P-HEMT) large signal. This algorithm solves the over-fitting problem of the Back Propagation (BP) neural network algorithm in the prediction data. It has the characteristics of fast calculation speed, so it can greatly save calculation processing time. It can also randomly generate the connection weights of the input layer, the hidden layer and the threshold of the hidden layer neurons, avoiding errors in parameter selection. In order to verify the superiority of the algorithm, the modeling effects of the BP neural network algorithm model, the Genetic Algorithm-Back Propagation (GA-BP) neural network algorithm model and the GA-ELM neural network algorithm model are compared in this paper. The results show that the proposed GA-ELM neural network algorithm model has the highest accuracy.
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-021-01891-7