DeepPropNet -- A Recursive Deep Propagator Neural Network for Learning Evolution PDE Operators
In this paper, we propose a deep neural network approximation to the evolution operator for time dependent PDE systems over long time period by recursively using one single neural network propagator, in the form of POD-DeepONet with built-in causality feature, for a small time interval. The trained...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a deep neural network approximation to the evolution operator for time dependent PDE systems over long time period by recursively using one single neural network propagator, in the form of POD-DeepONet with built-in causality feature, for a small time interval. The trained DeepPropNet of moderate size is shown to give accurate prediction of wave solutions over the whole time interval. |
---|---|
ISSN: | 2331-8422 |