Global POD-Galerkin ROMs for Fluid Flows with Moving Solid Structures

Traditional proper orthogonal decomposition (POD)-Galerkin projection for reduced-order models (ROMs) of fluid flows is based on a fixed domain. The current method removes this limitation by considering a single combined domain of fluid and solid, whereas the original solid boundary conditions are r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2022-03, Vol.60 (3), p.1400-1414
Hauptverfasser: Xu, Bolun, Gao, Haotian, Wei, Mingjun, Hrynuk, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditional proper orthogonal decomposition (POD)-Galerkin projection for reduced-order models (ROMs) of fluid flows is based on a fixed domain. The current method removes this limitation by considering a single combined domain of fluid and solid, whereas the original solid boundary conditions are reinforced by additional ROM terms. The combined domain requires a new inner product defined in the same combined domain to compute POD modes and the projection of equations. Solid motion is considered first as a continuous motion, then a decomposed motion, represented by a few solid modes to further reduce the computational cost. This new global approach was applied first on a two-dimensional direct numerical simulation (DNS) database of the flow past an oscillatory cylinder, and then on a three-dimensional DNS database of the flow past an oscillatory sphere. Last, the approach was applied on a high-resolution particle image velocimetry database from an experiment at higher Reynolds number of the flow past a pitching-up NACA0012 airfoil. The ROMs derived by the global POD-Galerkin projection approach, for all three moving-boundary cases, have shown adequate accuracy in the reconstruction of flow fields and the prediction of key aerodynamic features while keeping very low computational costs.
ISSN:0001-1452
1533-385X
DOI:10.2514/1.J060795