A fractional p(x,·)-Laplacian problem involving a singular term

This paper deals with a class of singular problems involving the fractional p ( x , · ) -Laplace operator of the form ( - Δ ) p ( x , · ) s u ( x ) = λ u γ ( x ) + u q ( x ) - 1 in Ω , u > 0 , in Ω u = 0 on R N \ Ω , where Ω is a smooth bounded domain in R N ( N ≥ 3 ), 0 < s < 1 , λ is a po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of pure and applied mathematics 2022-03, Vol.53 (1), p.100-111
Hauptverfasser: Mokhtari, A., Saoudi, K., Chung, N. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with a class of singular problems involving the fractional p ( x , · ) -Laplace operator of the form ( - Δ ) p ( x , · ) s u ( x ) = λ u γ ( x ) + u q ( x ) - 1 in Ω , u > 0 , in Ω u = 0 on R N \ Ω , where Ω is a smooth bounded domain in R N ( N ≥ 3 ), 0 < s < 1 , λ is a positive parameter and γ : R N ⟶ ( 0 , 1 ) is a continuous function, p : R 2 N ⟶ ( 1 , ∞ ) is a bounded, continuous and symmetric function, q : R N ⟶ ( 1 , ∞ ) is a continuous function. Using the direct method of minimization combined with the theory of fractional Sobolev spaces with variable exponents, we prove that the problem has one positive solution for λ > 0 small enough. To our best knowledge, this paper is one of the first attempts in the study of singular problems involving fractional p ( x , · ) -Laplace operators.
ISSN:0019-5588
0975-7465
DOI:10.1007/s13226-021-00037-4