A fractional p(x,·)-Laplacian problem involving a singular term
This paper deals with a class of singular problems involving the fractional p ( x , · ) -Laplace operator of the form ( - Δ ) p ( x , · ) s u ( x ) = λ u γ ( x ) + u q ( x ) - 1 in Ω , u > 0 , in Ω u = 0 on R N \ Ω , where Ω is a smooth bounded domain in R N ( N ≥ 3 ), 0 < s < 1 , λ is a po...
Gespeichert in:
Veröffentlicht in: | Indian journal of pure and applied mathematics 2022-03, Vol.53 (1), p.100-111 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with a class of singular problems involving the fractional
p
(
x
,
·
)
-Laplace operator of the form
(
-
Δ
)
p
(
x
,
·
)
s
u
(
x
)
=
λ
u
γ
(
x
)
+
u
q
(
x
)
-
1
in
Ω
,
u
>
0
,
in
Ω
u
=
0
on
R
N
\
Ω
,
where
Ω
is a smooth bounded domain in
R
N
(
N
≥
3
),
0
<
s
<
1
,
λ
is a positive parameter and
γ
:
R
N
⟶
(
0
,
1
)
is a continuous function,
p
:
R
2
N
⟶
(
1
,
∞
)
is a bounded, continuous and symmetric function,
q
:
R
N
⟶
(
1
,
∞
)
is a continuous function. Using the direct method of minimization combined with the theory of fractional Sobolev spaces with variable exponents, we prove that the problem has one positive solution for
λ
>
0
small enough. To our best knowledge, this paper is one of the first attempts in the study of singular problems involving fractional
p
(
x
,
·
)
-Laplace operators. |
---|---|
ISSN: | 0019-5588 0975-7465 |
DOI: | 10.1007/s13226-021-00037-4 |