LOGICALITY AND MODEL CLASSES

We ask, when is a property of a model a logical property? According to the so-called Tarski–Sher criterion this is the case when the property is preserved by isomorphisms. We relate this to model-theoretic characteristics of abstract logics in which the model class is definable. This results in a gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The bulletin of symbolic logic 2021-12, Vol.27 (4), p.385-414
Hauptverfasser: KENNEDY, JULIETTE, VÄÄNÄNEN, JOUKO
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We ask, when is a property of a model a logical property? According to the so-called Tarski–Sher criterion this is the case when the property is preserved by isomorphisms. We relate this to model-theoretic characteristics of abstract logics in which the model class is definable. This results in a graded concept of logicality in the terminology of Sagi [46]. We investigate which characteristics of logics, such as variants of the Löwenheim–Skolem theorem, Completeness theorem, and absoluteness, are relevant from the logicality point of view, continuing earlier work by Bonnay, Feferman, and Sagi. We suggest that a logic is the more logical the closer it is to first order logic. We also offer a refinement of the result of McGee that logical properties of models can be expressed in L∞∞ if the expression is allowed to depend on the cardinality of the model, based on replacing L∞∞ by a "tamer" logic.
ISSN:1079-8986
1943-5894
DOI:10.1017/bsl.2021.42