Refractive Index Effects in Pendant Drop Tensiometry

An optical model is established to investigate the effects of refractive index changes on the measurement of interfacial tension by the pendant drop method with axisymmetric drop shape analysis. In such measurements, light passes from the pendant drop through a surrounding bulk phase, an optical win...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of thermophysics 2022-05, Vol.43 (5), Article 65
Hauptverfasser: Pan, Ziqing, Trusler, J. P. Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An optical model is established to investigate the effects of refractive index changes on the measurement of interfacial tension by the pendant drop method with axisymmetric drop shape analysis. In such measurements, light passes from the pendant drop through a surrounding bulk phase, an optical window and air to reach the lens of the camera system. The relation between object and image size is typically determined by calibration and, if the refractive indices of any of the materials in the optical path change between calibration and measurement, a correction should be made. The simple model derived in this paper allows corrections to be calculated along with the corresponding contribution to the overall uncertainty of the interfacial tension. The model was verified by measurements of the interfacial tension between decane and water under two different calibration conditions. Neglect of the correction was shown to cause errors of up to 6 % when the bulk phase changed from air (during calibration) to water (during measurements) and of about 9 % when the system was calibrated without the optical window used for the final measurements. The refraction changes due to high pressures and supercritical fluid states can also lead to measurement errors. The proposed model can facilitate more accurate interfacial tension measurements and reduce the amount of repetitive calibration work required.
ISSN:0195-928X
1572-9567
DOI:10.1007/s10765-022-02997-z