Obtaining consistent time series from Google Trends

Google Trends data are a popular data source for research, but raw data are frequency‐inconsistent: daily data fail to capture long‐run trends. This issue has gone unnoticed in the literature. In addition, sampling noise can be substantial. We develop a procedure (available in an R‐package), which s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Economic inquiry 2022-04, Vol.60 (2), p.694-705
Hauptverfasser: Eichenauer, Vera Z., Indergand, Ronald, Martínez, Isabel Z., Sax, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Google Trends data are a popular data source for research, but raw data are frequency‐inconsistent: daily data fail to capture long‐run trends. This issue has gone unnoticed in the literature. In addition, sampling noise can be substantial. We develop a procedure (available in an R‐package), which solves both issues at once. We apply this procedure to construct long‐run, frequency‐consistent daily economic indices for three German‐speaking countries. The resulting indices are significantly correlated with traditional leading economic indicators while being available in real time. We discuss potential applications across disciplines and spanning well beyond business cycle analysis.
ISSN:0095-2583
1465-7295
DOI:10.1111/ecin.13049