One-Step Fabrication of Amino-Functionalized Fe3O4@SiO2 Core-Shell Magnetic Nanoparticles as a Potential Novel Platform for Removal of Cadmium (II) from Aqueous Solution
Fe3O4@SiO2-NH2 core-shell magnetic nanoparticles were developed by a rapid one-step precipitation route followed by reverse microemulsion and amine functionalization. In this study, an Fe3O4@SiO2-NH2 nanoparticle was used to evaluate its adsorption efficiency for the treatment of a synthetic solutio...
Gespeichert in:
Veröffentlicht in: | Sustainability 2022-02, Vol.14 (4), p.2290 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fe3O4@SiO2-NH2 core-shell magnetic nanoparticles were developed by a rapid one-step precipitation route followed by reverse microemulsion and amine functionalization. In this study, an Fe3O4@SiO2-NH2 nanoparticle was used to evaluate its adsorption efficiency for the treatment of a synthetic solution of Cd(II) ion. The structural and physicochemical properties of Fe3O4@SiO2-NH2 nanoparticles were characterized by XRD, SEM-EDAX, TEM, FTIR and TGA. From the TEM analysis, the morphology of Fe3O4@SiO2-NH2 was found as 100–300 nm. In TGA, the first weight loss was noticed between 373 and 573 K, the second was between 673 and 773 K and the final weight loss took place above 773 K. Batch experimental tests, such as pH, dosage of Fe3O4@SiO2-NH2, Cd(II) ion concentration, temperature as well as interaction time, were conducted and evaluated. Experimental study data were used for the non-linear forms exhibited by isotherms and kinetics of the sorption procedure. The equilibrium adsorption observations were adequately combined with pseudo-first-order kinetics as well as Freundlich isotherm. Monolayer maximum adsorption capacity was found to be 40.02 mg/g, recorded at pH 6 with an interaction time of 30 min, temperature of 303 K and sorbent dose of 2.0 g/L. The thermodynamic study indicated that the adsorption process was an exothermic, spontaneous reaction (−∆oo = −15.46–7.81 (kJ/mol)). The as-synthesized sorbent had excellent recyclability, and its adsorption efficiency was maintained after five cycles of reuse. The findings of the study exhibited the magnetic Fe3O4@SiO2-NH2-nanoparticle as an alternative effective adsorbent in eradicating Cd(II) ions from aqueous solution. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su14042290 |