Toxic potency-adjusted control of air pollution for solid fuel combustion
The combustion of solid fuels, including coal and biomass, is a main anthropogenic source of atmospheric particulate matter (PM). The hidden costs have been underestimated due to lack of consideration of the toxicity of PM. Here we report the unequal toxicity of inhalable PM emitted from energy use...
Gespeichert in:
Veröffentlicht in: | Nature energy 2022-02, Vol.7 (2), p.194-202 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The combustion of solid fuels, including coal and biomass, is a main anthropogenic source of atmospheric particulate matter (PM). The hidden costs have been underestimated due to lack of consideration of the toxicity of PM. Here we report the unequal toxicity of inhalable PM emitted from energy use in the residential sector and coal-fired power plants (CFPPs). The incomplete burning of solid fuels in household stoves generates much higher concentrations of carbonaceous matter, resulting in more than one order of magnitude greater toxicity than that from CFPPs. When compared with CFPPs, the residential sector consumed only a tenth of solid fuels in mainland China in 2017, but it contributed about 200-fold higher of the population-weighted toxic potency-adjusted PM
2.5
exposure risk. We suggest that PM
2.5
-related toxicity should be considered when making air pollution emission control strategies, and incomplete combustion sources should receive more policy attention to reduce exposure risks.
Policy effort has been put into pollution reduction from both coal-fired electricity and domestic solid fuel burning in China; however, the former has attracted greater research and funding. Li and colleagues now show that the more toxic pollution from residential combustion may be responsible for greater health impacts than coal electricity. |
---|---|
ISSN: | 2058-7546 2058-7546 |
DOI: | 10.1038/s41560-021-00951-1 |