Removing Popular Faces in Curve Arrangements

A face in a curve arrangement is called popular if it is bounded by the same curve multiple times. Motivated by the automatic generation of curved nonogram puzzles, we investigate possibilities to eliminate the popular faces in an arrangement by inserting a single additional curve. This turns out to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-08
Hauptverfasser: de Nooijer, Phoebe, Terziadis, Soeren, Weinberger, Alexandra, Masárová, Zuzana, Mchedlidze, Tamara, Löffler, Maarten, Rote, Günter
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A face in a curve arrangement is called popular if it is bounded by the same curve multiple times. Motivated by the automatic generation of curved nonogram puzzles, we investigate possibilities to eliminate the popular faces in an arrangement by inserting a single additional curve. This turns out to be NP-hard; however, it becomes tractable when the number of popular faces is small: We present a probabilistic FPT-approach in the number of popular faces.
ISSN:2331-8422