Fighting ability and the toxicity of raiding pheromone in an obligate kleptoparasite, the stingless bee Lestrimelitta niitkib

The evolution of obligate kleptoparasitism, the theft of food, has led to remarkable innovations, including physical weapons and chemical signals that can evolve into chemical weapons. Stingless bees in the genus Lestrimelitta are excellent examples of this phenomenon because they are obligate klept...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavioral ecology and sociobiology 2022-03, Vol.76 (3), Article 38
Hauptverfasser: James, Chase C., Sánchez, Daniel, Cruz-López, Leopoldo, Nieh, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The evolution of obligate kleptoparasitism, the theft of food, has led to remarkable innovations, including physical weapons and chemical signals that can evolve into chemical weapons. Stingless bees in the genus Lestrimelitta are excellent examples of this phenomenon because they are obligate kleptoparasites that no longer collect floral resources and instead steal brood resources from other bees. Their ability to raid successfully is thus essential to their fitness even when they fight species that are physically bigger, have larger defense forces, or both. We conducted morphometric analyses, quantified Lestrimelitta niitkib mandibular gland pheromone (MGP) components, and carried out individual fighting trials between L. niitkib and the stingless bee Scaptotrigona mexicana , a common victim species, to shed light on the detailed reasons for their success at robbing. Measurements showed that L. niitkib mandibles have thicker exoskeleton cuticles and overall greater width, particularly in the medial and proximal sections, than S . mexicana , which is quite similar in body size. In all fights, L. niitkib bit victims and released MGP, as it does during raids. Scaptotrigona mexicana victims exhibited significantly increased uncoordinated behaviors and showed partial or complete paralysis. We analyzed and quantified the major components of MGP, which consisted of large quantities of geranial (mean of 253 μg) and neral (48 μg) per bee. Microinjections of 1 bee equivalent (BE) of natural or synthetic MGP and ≥ 0.1 BE of geranial significantly increased deleterious behaviors and paralysis as compared to control injections. We suggest that the large quantities of MGP used during raiding have led to an unexpected outcome, a semiochemical evolving the additional function of a toxin, and contribute to the ability of Lestrimelitta to rob its victims. Significance statement Kleptoparasites, organisms that steal food resources, employ multiple physical and chemical tools to survive. The success of kleptoparasitism requires a balance between honesty and coercion in interspecific communication. The genus Lestrimellita consists of a group of kleptoparasitic stingless bee species that raid other bee colonies for food and therefore depend upon winning these raids. However, why they succeed remains not fully understood. We studied differences in morphology between L. niitkib and its victims, the pheromones they release during raids, and ran individual fight trials between L.
ISSN:0340-5443
1432-0762
DOI:10.1007/s00265-022-03129-1