Implementation of System Pharmacology and Molecular Docking Approaches to Explore Active Compounds and Mechanism of Ocimum Sanctum against Tuberculosis

Worldwide, Tuberculosis (TB) is caused by Mycobacterium tuberculosis bacteria. Ocimum sanctum, commonly known as holy basil (Tulsi), is an herbaceous perennial that belongs to the family Lamiaceae and is considered one of the most important sources of medicine and drugs for the treatment of various...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2022-02, Vol.10 (2), p.298
Hauptverfasser: Tabassum, Sana, Khalid, Hafiz Rameez, Haq, Waqar ul, Aslam, Sidra, Alshammari, Abdulrahman, Alharbi, Metab, Riaz Rajoka, Muhammad Shahid, Khurshid, Mohsin, Ashfaq, Usman Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Worldwide, Tuberculosis (TB) is caused by Mycobacterium tuberculosis bacteria. Ocimum sanctum, commonly known as holy basil (Tulsi), is an herbaceous perennial that belongs to the family Lamiaceae and is considered one of the most important sources of medicine and drugs for the treatment of various diseases. The presented study aims to discover the potential phenomenon of Ocimum sanctum in the medicament of tuberculosis using a network pharmacology approach. Active ingredients of Ocimum sanctum were fetched through two different databases and from literature review and then targets of these compounds were harvested by SwissTargetPrediction. Potential targets of TB were downloaded from GeneCards and DisGNet databases. After screening of mutual targets, enrichment analysis through DAVID was performed. Protein–protein interaction was performed using the String database and visualized by Cytoscape. Then the target-compound-pathway network was constructed with Cytoscape. In the end, molecular docking was performed to get the potential active ingredients against tuberculosis. Eight active ingredients with 776 potential therapeutic targets were obtained from O. sanctum, 632 intersected targets from two databases were found in TB, 72 common potential targets were found from TB and O. sanctum. The topological analysis exposes those ten targets that formed the core PPI network. Furthermore, molecular docking analysis reveals that active compounds have the greater binding ability with the potential target to suppress TB.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr10020298