Optimization of Repair Process Parameters for Open-Arc Surfacing Welding of Grinding Rolls Based on the Response Surface Method

The dilution rate of surfacing layers and the quality of weld forming are important factors affecting the quality of surfacing layers in open-arc surfacing. They are determined by the interaction of various surfacing parameters. In this paper, the response surface method is used to optimize the proc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2022-02, Vol.10 (2), p.321
Hauptverfasser: Wang, Jin, Wei, Min, He, Jimiao, Wang, Yuqi, Ren, Changrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dilution rate of surfacing layers and the quality of weld forming are important factors affecting the quality of surfacing layers in open-arc surfacing. They are determined by the interaction of various surfacing parameters. In this paper, the response surface method is used to optimize the process parameters of open-arc surfacing welding. Mathematical models of the surfacing current, surfacing voltage, surfacing speed, dilution rate and weld residual height were established, and the reliability of the models was verified by variance analysis. By performing an analysis of the perturbation diagram and response surface diagram, the influence law of each influencing factor on the response value was obtained. The parameters of surfacing welding were optimized by setting optimization targets, and the experimental results of optimized parameters were compared with the predicted results. The optimized surfacing parameters were tested by grinding roller surfacing repair. The experimental results show that the quality of the grinding roller can meet the repair requirements. This shows that the model can be used to guide the surface repair of rollers and is of great significance to ensure the surface-repair quality of rollers.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr10020321