Difference matrices with five rows over finite abelian groups
Let G be a finite group and k ⩾ 2 be an integer. A ( G , k , 1)-difference matrix (DM) is a k × | G | matrix D = ( d ij ) with entries from G , such that for all distinct rows x and y , the multiset of differences { d xi d yi - 1 : 1 ⩽ i ⩽ | G | } contains each element of G exactly once. This paper...
Gespeichert in:
Veröffentlicht in: | Designs, codes, and cryptography codes, and cryptography, 2022-02, Vol.90 (2), p.367-386 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be a finite group and
k
⩾
2
be an integer. A (
G
,
k
, 1)-difference matrix (DM) is a
k
×
|
G
|
matrix
D
=
(
d
ij
)
with entries from
G
, such that for all distinct rows
x
and
y
, the multiset of differences
{
d
xi
d
yi
-
1
:
1
⩽
i
⩽
|
G
|
}
contains each element of
G
exactly once. This paper examines the existence of difference matrices with five rows over a finite abelian group. It is proved that if
G
is a finite abelian group and the Sylow 2-subgroup of
G
is trivial or noncyclic, then a (
G
, 5, 1)-DM exists, except for
G
∈
{
Z
3
,
Z
2
⊕
Z
2
,
Z
4
⊕
Z
2
,
Z
9
}
and possibly for some groups whose Sylow 2-subgroup lies in
{
Z
2
⊕
Z
2
,
Z
4
⊕
Z
2
,
Z
32
⊕
Z
2
,
Z
16
⊕
Z
4
}
, and some cyclic groups of order 9
p
with
p
prime. |
---|---|
ISSN: | 0925-1022 1573-7586 |
DOI: | 10.1007/s10623-021-00981-6 |