Preparation and Self-Healing Application of Isocyanate Prepolymer Microcapsules
In this study, we successfully manufactured polyurethane microcapsules containing isocyanate prepolymer as a core material for self-healing protection coatings via interfacial polymerization of a commercial polyurethane curing agent (Bayer L-75) and 1,4-butanediol (BDO) as a chain extender in an emu...
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2022-02, Vol.12 (2), p.166 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we successfully manufactured polyurethane microcapsules containing isocyanate prepolymer as a core material for self-healing protection coatings via interfacial polymerization of a commercial polyurethane curing agent (Bayer L-75) and 1,4-butanediol (BDO) as a chain extender in an emulsion solution. With an optical microscope (OM) and a scanning electron microscope (SEM), the resulting microcapsules showed a spherical shape and an ideal structure with a smooth surface. Fourier transform infrared spectra (FTIR) showed that the core material was successfully encapsulated. Thermal gravimetric analysis (TGA) showed that the initial evaporation temperature of the microcapsules was 270 °C. In addition, we examined the influence of the concentration of the emulsifier and chain extender on the structure and morphology of the microcapsules. The results indicate that the optimal parameters of the microcapsule are an emulsifier concentration of 7.5% and a chain extender concentration of 15.38%. Microcapsules were added to the epoxy resin coating to verify the coating’s self-healing performance by a surface scratch test, and the results showed that the cracks could heal in 24 h. Furthermore, the self-healing coating had excellent corrosion resistance. |
---|---|
ISSN: | 2079-6412 2079-6412 |
DOI: | 10.3390/coatings12020166 |