Contribution of ammonia-oxidizing archaea and bacteria to nitrification under different biogeochemical factors in acidic soils
Nitrification in soils is an essential process that involves archaeal and bacterial ammonia-oxidizers. Despite its importance, the relative contributions of soil factors to the abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) and their nitrification performances are seldom discussed....
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2022-03, Vol.29 (12), p.17209-17222 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nitrification in soils is an essential process that involves archaeal and bacterial ammonia-oxidizers. Despite its importance, the relative contributions of soil factors to the abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) and their nitrification performances are seldom discussed. The aim of this study was to determine the effects of AOA and AOB abundance and different environmental conditions (pH, TC, TN, moisture, and temperature) on nitrification performance. The soils of the long-term fertilized tea orchards and forests were sampled in the field, and nitrification experiments were conducted in the laboratory. The acid soils were collected from the field and used in laboratory incubation experiments to calculate the nitrification rate, including the net nitrification rate (NN rate), nitrification potential (NP), and nitrification kinetics. The basic parameters, different forms of nitrogen content, and AOA and AOB
amoA
gene copies were also analyzed. Compared with the forest soil, the tea orchard soil had a lower pH and higher nitrogen content (
p
|
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-021-16887-8 |