Copper Supported on Mesoporous Structured Catalysts for NO Reduction

Nitrogen oxides (NOx) are one of the pollutants of greatest concern in terms of atmospheric contamination and, consequently, human health. The main objective of this work, is the synthesis of structured carbon catalysts, introducing on their surface metals and nitrogen groups, catalytically active i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2022-02, Vol.12 (2), p.170
Hauptverfasser: Felgueiras, Mariana B. S., Restivo, João, Sousa, Juliana P. S., Pereira, Manuel F. R., Soares, Olívia S. G. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitrogen oxides (NOx) are one of the pollutants of greatest concern in terms of atmospheric contamination and, consequently, human health. The main objective of this work, is the synthesis of structured carbon catalysts, introducing on their surface metals and nitrogen groups, catalytically active in NO reduction. Structured catalysts represent an attractive alternative to powder catalysts because they have better thermal stability and lower pressure drop. The catalysts were synthesized by coating a melamine foam using precursor solutions of carbon xerogels with and without nitrogen (using melamine and urea as precursors), and impregnated with transition metals (Fe, Ni and Cu). The introduction of nitrogen and metals modified the textural properties of the materials. Samples synthesized with melamine presented the highest amount of nitrogen, while the highest content of copper, found to be the most active transition metal for NO reduction, was found in structured catalysts impregnated with urea. The presence of transition metals in catalysts is essential for the reduction of NO to N2 and the introduction of nitrogenous precursors makes this evident. The synthesis and application of carbon-supported structured catalysts containing transition metals for NO reduction is demonstrated in this work for the first time, as well as the study of the factors influencing their performance.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal12020170