Lines on K3 quartic surfaces in characteristic 3

We investigate the number of straight lines contained in a K3 quartic surface X defined over an algebraically closed field of characteristic 3. We prove that if X contains 112 lines, then X is projectively equivalent to the Fermat quartic surface; otherwise, X contains at most 67 lines. We improve t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2022-03, Vol.167 (3-4), p.675-701
1. Verfasser: Veniani, Davide Cesare
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the number of straight lines contained in a K3 quartic surface X defined over an algebraically closed field of characteristic 3. We prove that if X contains 112 lines, then X is projectively equivalent to the Fermat quartic surface; otherwise, X contains at most 67 lines. We improve this bound to 58 if X contains a star (ie four distinct lines intersecting at a smooth point of X ). Explicit equations of three 1-dimensional families of smooth quartic surfaces with 58 lines, and of a quartic surface with 8 singular points and 48 lines are provided.
ISSN:0025-2611
1432-1785
DOI:10.1007/s00229-021-01284-9