Lines on K3 quartic surfaces in characteristic 3
We investigate the number of straight lines contained in a K3 quartic surface X defined over an algebraically closed field of characteristic 3. We prove that if X contains 112 lines, then X is projectively equivalent to the Fermat quartic surface; otherwise, X contains at most 67 lines. We improve t...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2022-03, Vol.167 (3-4), p.675-701 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the number of straight lines contained in a K3 quartic surface
X
defined over an algebraically closed field of characteristic 3. We prove that if
X
contains 112 lines, then
X
is projectively equivalent to the Fermat quartic surface; otherwise,
X
contains at most 67 lines. We improve this bound to 58 if
X
contains a star (ie four distinct lines intersecting at a smooth point of
X
). Explicit equations of three 1-dimensional families of smooth quartic surfaces with 58 lines, and of a quartic surface with 8 singular points and 48 lines are provided. |
---|---|
ISSN: | 0025-2611 1432-1785 |
DOI: | 10.1007/s00229-021-01284-9 |